江苏省苏州市2022-2023学年七年级下学期期末数学试题

试卷更新日期:2023-10-08 类型:期末考试

一、单选题

  • 1. 如果一个三角形的两边长分别为2和4,则第三边长可能是( )
    A、8 B、6 C、4 D、2
  • 2. 下列运算不正确的是( )
    A、x3+x3=x6 B、x6÷x3=x3 C、x2x3=x5 D、(x3)4=x12
  • 3. 不等式组 {2x>43x57 的解集在数轴上可以表示为(    )。
    A、 B、 C、 D、
  • 4. 把代数式mx26mx+9m分解因式,下列结果中正确的是( )
    A、m(x+3)2 B、m(x+3)(x3) C、m(x4)2 D、m(x3)2
  • 5. 下列四个图形中,线段BE是△ABC的高的是(  )
    A、   B、   C、   D、
  • 6. 如果a<b , 下列各式中不一定正确的是( )
    A、a1<b1 B、1a<1b C、3a>3b D、a4<b4
  • 7. 若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是(  )

    A、ac>bc B、ab>cb C、a+c>b+c D、a+b>c+b
  • 8. 小亮用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮两种水果各买了多少千克?设小亮买了甲种水果x千克,乙种水果y千克,则可列方程组为(   )
    A、{4x+6y=28x=y+2 B、{4y+6x=28x=y+2 C、{4x+6y=28x=y2 D、{4y+6x=28x=y2
  • 9.

    如图所示,把一个三角形纸片ABC顶角向内折叠3次之后,3个顶点不重合,那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是(     )


    A、180° B、270° C、360° D、无法确定
  • 10.

    如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )

    A、1 B、2 C、3 D、4

二、填空题

  • 11. 计算:(3x﹣1)(x﹣2)= 

  • 12. 地球最深的海沟是位于太平洋的马里亚纳大海沟,其最深处海拔11034m , 该数用科学记数法可表示为 m.
  • 13. 命题“对顶角相等”的逆命题是 

  • 14. 若不等式(a﹣3)x>1的解集为x< 1a3 ,则a的取值范围是
  • 15. 如果 15a2b314ax+1bx+y 是同类项,那么xy=.
  • 16. 已知2m+5n+3=0,则4m×32n的值为.
  • 17. 如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果1=15° , 那么2的度数是

  • 18. 若4a2+kab+9b2是完全平方式,则k=
  • 19. 若一个三角形的三边长分别是xcm(x+4)cm(122x)cm , 则x的取值范围是

三、解答题

  • 20. 计算:
    (1)、(13)232+(2x5)0
    (2)、(2x2)32x2y33xy3
  • 21. 把下列各式分解因式:
    (1)、(x+1)214
    (2)、3ax2+6axy+3ay2
  • 22. 解不等式组 {2x+15(x1)2x73<x2  ,并写出它的所有整数解.
  • 23. 若x+y=3,且(x+2)(y+2)=12.
    (1)、求xy的值;
    (2)、求x2+3xy+y2的值.
  • 24. 如图,已知:DE⊥AC于E,BC⊥AC,CD⊥AB于D,∠1=∠2,说明:GF⊥AB.

  • 25. 已知{x=5y=6{x=3y=10 , 都是关于x、y的方程y=kx+b的解.
    (1)、求k、b的值;
    (2)、若y的值不大于0,求x的取值范围;
    (3)、若-1≤x<2,求y的取值范围.
  • 26. 甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长
  • 27. 已知:在△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点P是BC边上的一个动点,连接AP.直线BE垂直于直线AP,交AP于点E,直线CF垂直于直线AP,交AP于点F.

    (1)、当点P在BD上时(如图①),求证:CF=BE+EF;
    (2)、当点P在DC上时(如图②),CF=BE+EF还成立吗?若不成立,请画出图形,并直接写出CF、BE、EF之间的关系(不需要证明).
    (3)、若直线BE的延长线交直线AD于点M(如图③),找出图中与CP相等的线段,并加以证明.