2023年浙教版数学八年级上册2.8 直角三角形全等的判定 同步测试(培优版)
试卷更新日期:2023-08-06 类型:同步测试
一、选择题(每题3分,共30分)
-
1. 如图,已知 于点 , 于点 ,且 , , ,则 的度数为( )A、 B、 C、 D、2. 如图,点P到 、 、 的距离恰好相等,则点P的位置:①在 的平分线上;②在 的平分线上;③在 的平分线上;④恰好是 、 、 三条平分线的交点.上述结论中,正确的个数有( )A、 个 B、 个 C、 个 D、 个3. 如图,在四边形中, , 平分 , , , , 分别是 , 上的动点,当取得最小值时,的长是( )A、8 B、10 C、12 D、164. 如图,在等腰△ 中, , ,O是△ 外一点,O到三边的垂线段分别为 , , ,且 ,则 的长度为( )A、5 B、6 C、 D、5. 如图,∠ABC=40°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为( )A、20° B、140° C、40°或140° D、20°或140°6. 如图, 的外角 , 的平分线 , 相交于点P, 于E, 于F,下列结论:(1) ;(2)点P在 的平分线上;(3) ;(4)若 ,则 ,其中正确的有( )A、1个 B、2个 C、3个 D、4个7. 如图, 中, 的平分线 与边 的垂直平分线 相交于 交 的延长线于 于F,现有下列结论:① ;② ;③ 平分 ;④若 ,则 .其中正确的个数为( )A、1个 B、2个 C、3个 D、4个8. 如图 是 的角平分线, 于E,点F,G分别是 , 上的点,且 , 与 的面积分别是10和3,则 的面积是( )A、4 B、5 C、6 D、79. 如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是( )A、①②③ B、①②④ C、①③④ D、②③④10. 如图所示, 是 的角平分线, ,垂足为 , , 和 的面积分别为49,40,则 的面积为( )A、3.5 B、4.5 C、9 D、10
二、填空题(每空4分,共24分)
-
11. 如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB上,∠AED=73°,若点P是等腰△ABC的腰上的一点,则当△EDP为以DE为腰的等腰三角形时,∠EDP的度数是.12. 如图,AP,BP分别平分△ABC内角∠CAB和外角∠CBD,连接CP,若∠ACP=130°,则∠APB= .13. 如图, ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF,则下列结论中正确的是.
①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB;④S△PAC=S△MAP+S△NCP.
14. 如图,已知等边和等边 , 点P在BC的延长线上,EC的延长线交AP于点M,连接BM;下列结论:①;②;③BM平分;④ , 其中正确的有(填序号).15. 如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC;其中正确的结论为 . (填写序号)16. 如图,在 ABC中,AH是高,AE BC,AB=AE,在AB边上取点D,连接DE,DE=AC,若 ,BH=1,则BC=.三、综合题(共8题,共66分)
-
17. 定义:如果三角形的两个内角和满足 , 那么我们称这样的三角形为“类直角三角形”.如图,在中, , , .请把这个三角形分割成两个三角形,使得其中一个为“类直角三角形”,并求出这个“类直角三角形”的面积.(备注:要求尺规作图)18. 如图,在 中, 是角平分线, 于点 , 在边AC上, .(1)、如图1,若 ,求证: ;(2)、如图2,求证: ;(3)、若 , , ,直接写出 的长.19. 已知在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM⊥AB于M,DN⊥AC的延长线于N.(1)、证明:BM=CN.(2)、当∠BAC=70°时,求∠DCB的度数;(3)、若AB=8,AC=4,DE=3,则4DN2﹣BC2的值为 .20. 如图,∠MAN是一个钝角,AB平分∠MAN,点C在射线AN上,且AB=BC,BD⊥AC,垂足为D.(1)、求证:;(2)、动点P,Q同时从A点出发,其中点Q以每秒3个单位长度的速度沿射线AN方向匀速运动;动点P以每秒1个单位长度的速度匀速运动.已知AC=5,设动点P,Q的运动时间为t秒.
①如图②,当点P在射线AM上运动时,若点Q在线段AC上,且 , 求此时t的值;
②如图③,当点P在直线AM上运动时,点Q在射线AN上运动的过程中,是否存在某个时刻,使得APB与BQC全等?若存在,请求出t的值;若不存在,请说出理由.
21. △ABC中,∠ACB=90°,AC=BC , 点D是射线BC上一点,连接AD , 过点B作BF⊥AD于点F , 直线BF、AC交于点E .(1)、如图1,当点D在线段BC的延长线上时,求证:AC+CE=BD;(2)、如图2,当点D在线段BC上时,求证:FC平分∠AFE;(3)、如图3,在(2)的条件下,若点D是BC的中点,△AFE的面积为36,求AF的长.22. 如图①,C、F分别为线段AD上的两个动点,BC⊥AD,垂足为C,EF⊥AD,垂足为F,且AB==DE,AF=CD,点G是AD与BE 的交点.(1)、求证∶ BG=EG;(2)、当C、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立,请给予证明;若不成立,请说明理由.23. 如图,∠MON=90°,点A、B分别在射线OM、ON上,点C在∠MON内部.(1)、若OA=OB,①如图1,若CA⊥OM,CB⊥ON.求证:CA=CB.
②如图2,若∠ACB=90°.求证:OC平分∠ACB.
(2)、如图3,点A、B 分别在射线OM、ON上运动,点C随之运动,且∠ACB=90°,AC=BC.P为OM上一定点,当点C运动到何处时,PC的长度最短?请用尺规作图作出PC最短时C点的位置(保留作图痕迹,不要写作法),并请简要说明理由.
24. 在 中, .(1)、如图1、求证: :(2)、如图2,D为AB上一点,连接CD,E为CD中点,过点E作 于点E,连接 ,求证: ;(3)、如图3,在(2)的条件下,过点F作 于点H,连接AF,若 AF∥BC,FH=4,CH=20,BD=10 ,求 的面积