广东省历年(2019-2023年)中考数学真题分类汇编4 方程与不等式

试卷更新日期:2023-07-29 类型:二轮复习

一、选择题

  • 1. 不等式 x1>2 的解集在数轴上表示为(    )
    A、 B、 C、 D、
  • 2. 一元一次不等式组{x2>1x<4的解集为 (   )
    A、1<x<4 B、x<4 C、x<3 D、3<x<4
  • 3. 不等式组 {23x1x12(x+2) 的解集为(    )
    A、无解 B、x1 C、x1 D、1x1
  • 4. 若 |a3|+9a212ab+4b2=0 ,则 ab= (    )
    A、3 B、92 C、43 D、9
  • 5. 《九章算术》中有问题:1亩好田是300元,7亩坏田是500元,一人买了好田坏田一共是100亩,花费了10000元,问他买了多少亩好田和坏田?设一亩好田为x元,一亩坏田为y元,根据题意列方程组得(    )
    A、{x+y=100300x+7500y=10000 B、{x+y=100300x+5007y=10000   C、{x+y=1007500x+300y=10000 D、{x+y=1005007x+300y=10000  
  • 6. 下面命题正确的是(   )
    A、矩形对角线互相垂直 B、方程x2=14x的解为x=14 C、六边形内角和为540° D、一条斜边和一条直角边分别相等的两个直角三角形全等
  • 7. 关于x的一元二次方程 x2(k1)xk+2=0 有两个实数根 x1,x2(x1x2+2)(x1x22)+2x1x2 =3 ,则k的值(  )
    A、0或2 B、-2或2 C、-2 D、2
  • 8. 已知 x1x2 是一元二次方程 x22x=0 的两个实数根,下列结论错误的是( )
    A、x1x2 B、x122x1=0 C、x1+x2=2 D、x1x2=2
  • 9. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x吨,则所列方程正确的是(     ).
    A、75x5=50x B、75x=50x5 C、75x+5=50x D、75x=50x+5
  • 10. 方程 1x3=2x 的解为(    )
    A、x=6 B、x=2 C、x=2 D、x=6
  • 11. 以下说法正确的是( )
    A、平行四边形的对边相等 B、圆周角等于圆心角的一半 C、分式方程 1x2=x1x22 的解为x=2 D、三角形的一个外角等于两个内角的和
  • 12. 甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是(   )
    A、120x=150x8 B、120x+8=150x C、120x8=150x D、120x=150x+8

二、填空题

  • 13. 已知方程 x2+mx3=0 的一个根是1,则m的值为
  • 14. 某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打折.
  • 15. 一元二次方程 x24x+m=0 有两个相等的实数根,点 A(x1y1)B(x2y2) 是反比例函数 y=mx 上的两个点,若 x1<x2<0 ,则 y1 y2 (填“<”或“>”或“=”).
  • 16. 二元一次方程组 {x+2y=22x+y=2 的解为
  • 17. 若一元二次方程 x2+bx+c=0bc为常数)的两根 x1x2 满足 3<x1<11<x2<3 ,则符合条件的一个方程为
  • 18. 方程 xx+1=32x+2 的解是

三、计算题

四、综合题

  • 23. 某商场在世博会上购置A,B两种玩具,其中B玩具的单价比A玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.
    (1)、求A,B玩具的单价;
    (2)、若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A玩具?
  • 24. 民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”、“广东技工”、“南粤家政”三项培训工程,今年计划新增加培训共100万人次
    (1)、若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;
    (2)、“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?
  • 25. 某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.
    (1)、若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?
    (2)、若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?
  • 26. 平面直角坐标系 xOy 中,抛物线 Gy=ax2+bx+c(0<a<12) 过点 A(1c5a)B(x13)C(x23) ,顶点 D 不在第一象限,线段 BC 上有一点 E ,设 OBE 的面积为 S1OCE 的面积为 S2S1=S2+32
    (1)、用含 a 的式子表示 b
    (2)、求点 E 的坐标;
    (3)、若直线 DE 与抛物线 G 的另一个交点 F 的横坐标为 6a+3 ,求 y=ax2+bx+c1<x<6 时的取值范围(用含 a 的式子表示).
  • 27. 已知关于 xy 的方程组 {ax+23y=103x+y=4{xy=2x+by=15 的解相同.
    (1)、求 ab 的值;
    (2)、若一个三角形的一条边的长为 26 ,另外两条边的长是关于 x 的方程 x2+ax+b=0 的解.试判断该三角形的形状,并说明理由.
  • 28. 有A,B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.
    (1)、求焚烧1吨垃圾,A和B各发电多少?
    (2)、A,B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B厂总发电量最大为多少度?
  • 29. 端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
    (1)、求猪肉粽和豆沙粽每盒的进价;
    (2)、设猪肉粽每盒售价x(50x65)y 表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
  • 30. 某社区拟建 AB 两类摊位以搞活“地摊经济”,每个 A 类摊位的占地面积比每个 B 类摊位的占地面积多2平方米,建 A 类摊位每平方米的费用为40元,建 B 类摊位每平方米的费用为30元,用60平方米建 A 类摊位的个数恰好是用同样面积建 B 类摊位个数的 35
    (1)、求每个 AB 类摊位占地面积各为多少平方米?
    (2)、该社拟建 AB 两类摊位共90个,且 B 类摊位的数量不少于 A 类摊位数量的3倍.求建造这90个摊位的最大费用.
  • 31. 某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.
  • 32. 端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.
    (1)、肉粽和蜜枣粽的进货单价分别是多少元?
    (2)、由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?
  • 33. 探究:是否存在一个新矩形,使其周长和面积为原矩形的2倍、 12 倍、k倍.
    (1)、若该矩形为正方形,是否存在一个正方形,使其周长和面积都为边长为2的正方形的2倍?(填“存在”或“不存在”).
    (2)、继续探究,是否存在一个矩形,使其周长和面积都为长为3,宽为2的矩形的2倍?

    同学们有以下思路:

    ①设新矩形长和宽为xy , 则依题意 x+y=10xy=12

    联立 {x+y=10xy=12x210x+12=0 ,再探究根的情况:

    根据此方法,请你探究是否存在一个矩形,使其周长和面积都为原矩形的 12 倍;

    ②如图也可用反比例函数与一次函数证明 l1y=x+10l2y=12x ,那么,

    a . 是否存在一个新矩形为原矩形周长和面积的2倍?

    b . 请探究是否有一新矩形周长和面积为原矩形的 12 ,若存在,用图像表达;

    c . 请直接写出当结论成立时k的取值范围:.