北京市丰台区2022-2023学年七年级下学期数学期末考试试卷

试卷更新日期:2023-07-28 类型:期末考试

一、单选题

  • 1. 在下列各组由运动项目的图标组成的图形中,能将其中一个图形只经过平移得到另一个图形的是(    )
    A、 B、 C、 D、
  • 2. 9的平方根是(    )

    A、3  B、±3   C、3   D、±3
  • 3. 以下调查中,适宜抽样调查的是(    )
    A、了解某班学生喜爱的体育运动项目的情况 B、合唱节前,某班计划购买服装,统计同学们的服装尺寸大小 C、了解某地区饮用水矿物质含量的情况 D、旅客上飞机前的安全检查
  • 4. 不等式x+1<0的解集在数轴上表示正确的是(    )
    A、 B、 C、 D、
  • 5. 如图所示,将一块三角板的直角顶点放在直尺的一边上,若1=145° , 则2的大小是(    )

      

    A、60° B、55° C、45° D、35°
  • 6. 如果{x=2y=1是关于xy的二元一次方程ax+y=3的解,那么a的值是(    )
    A、1 B、1 C、2 D、3
  • 7. 有如下四个命题:

    ①无理数是无限不循环小数;

    ②连接直线外一点与直线上各点的所有线段中,垂线段最短;

    ③如果a>b , 那么a2<b2

    ④两条直线被第三条直线所截,同旁内角互补

    其中,所有正确命题的序号是(    )

    A、①②③ B、①② C、③④ D、②④
  • 8. 如图,在平面直角坐标系xOy中,点A的坐标为(40) . 线段OA以每秒旋转90°的速度,绕点O沿顺时针方向y连续旋转,同时,点P从点O出发,以每秒移动1个单位长度的速度,在线段OA上,按照OAOA…的路线循环运动,则第2023秒时点P的坐标为(    )

      

    A、(20) B、(10) C、(02) D、(01)

二、填空题

  • 9. 写出一个绝对值大于2且小于3的无理数
  • 10. 如果x3=8 , 那么x=.
  • 11. 用不等式表示“a的3倍与b的和是非负数”,应为
  • 12. 如图,只需添加一个条件,即可以证明ABCD , 这个条件可以是 . (写出一个即可)

      

  • 13. 下面是2018年-2022年中国新能源汽车保有量的统计图,2022年新能源汽车保有量比2021年增加了万辆,从2019年到2022年新能源汽车保有量年增长率最大的是年.

      

  • 14. A(34)B(0b)是平面直角坐标系中的两点,连接AB , 当线段AB长度最小时,b的值为 , 线段AB长为
  • 15. 如图在4×4的正方形网格中,每个小正方形的边长均为1,点ABC均在格点(小正方形的顶点)上.在网格中建立平面直角坐标系,且A(11)B(12) . 如果点C是点A平移后的对应点,点B按点A的平移过程进行平移,且平移后的对应点为D , 那么点D的坐标是

      

  • 16. 小明沿着某公园的环形跑道(周长大于1km)按逆时针方向跑步,并用跑步软件记录运动轨迹,他从起点出发,每跑1km , 软件会在运动轨迹上标注出相应的里程数.前4km的记录数据如图所示,当小明跑了2圈时,他的运动里程数3km(填“>”“=”或“<”);如果小明跑到10km时恰好回到起点,那么此时小明总共跑的圈数为

      

三、解答题

  • 17. 计算:|2|4+(2+32)
  • 18. 解方程组:{3x+y=3x2y=8
  • 19. 解不等式组:{x+42x+3x1>x+13
  • 20. 如图,P为BAC的边AC上一点.

      

    (1)、根据下列语句按要求画图.

    ①过点P画AC的垂线a;

    ②过点P画AB的平行线b;

    (2)、在(1)的条件下,若BAC=120° , 则直线a与直线b形成的四个角的度数分别是
  • 21. 已知:如图,DMACEFAB于点F1=2

    求证:CDAB

    完成如下证明.

    证明:∵DMAC

    1=DCA(  )(填推理的依据).

    1=2

    2=DCA

          (  )(填推理的依据).

    EFB= 

    EFAB

    EFB= °

    CDB=90°

    CDAB

  • 22. 青春期是青少年生长发育的关键时期,这一时期的青少年需要通过合理的膳食以满足生长发育的需求,某学校想了解本校1113岁的学生能量摄入情况,从本校1113岁的学生中抽取40名学生,对40名学生某天能量摄入值(单位:千卡)进行了调查、收集与整理,下面给出了部分信息

         a . 能量摄入值(单位:千卡)频数分布表:

                                                                                                                                                                                                                        

    组别

    能量摄入值

    频数

    第1组

             1600x<1700

             2

    第2组

             1700x<1800

             8

    第3组

             1800x<1900

             m

    第4组

             1900x<2000

             12

    第5组

             2000x<2100

             n

    b.能量摄入值(单位:千卡)的频数分布直方图及扇形图:

      

    请根据以上信息,完成下列问题:

    (1)、写出mnp的值;
    (2)、补全频数分布直方图;
    (3)、根据《中国学龄儿童膳食指南(2022)》,1113岁的学龄儿童的能量需要水平是1800~2000千卡/天,如果该校1113岁的学生共有200人,请你估计该校1113岁的学生当日能量摄入值x(单位:千卡)在1800x<2000的人数.
  • 23. 如图,在平面直角坐标系xOy中,直线l经过原点O和点A(11)

      

    (1)、①在图中描出点P1(23)P2(21)P3(33)P4(14)

    ②在点P1P2P3P4中,位于直线l左上方的点是;位于直线l右下方的点是

    (2)、若点B(2bb+1)位于直线l的左上方,则b的取值范围是
  • 24. 北京丰台站是亚洲最大铁路枢纽客站.北京丰台站交通枢纽是北京丰台站的重要配套工程,设计施工中采用了绿色建筑设计及建造技术,通过设置空气源热泵、节能灯具、高性能建材等,节约能源及建筑材料.北京丰台站交通枢纽将在2023年年内实现主体结构封顶.施工单位租用两种车型为交通枢纽运送高性能建材,若用2辆A型车和1辆B型车载满高性能建材,一次可运送10吨:用1辆A型车和2辆B型车载满高性能建材,一次可运送11吨.

    根据以上信息,解答下列问题:

    (1)、1辆A型车和1辆B型车都载满高性能建材,一次分别可运送多少吨?
    (2)、现有高性能建材31吨,计划同时租用A型车a辆,B型车b辆,一次运完且恰好每辆车都载满高性能建材.

    ①请你帮施工单位列出所有可能的租车方案:

    ②若1辆A型车需租金300元/次,1辆B型车需租金320元/次,则最少的租车费是元

  • 25. 如图1,线段ABCDP为线段AC上一动点(不与点AC重合).分别连接BPDP . 过点P在线段AC的右侧作射线PM , 使PMAB , 作BPD的角平分线PN

      

    (1)、如图2,当PMPN重合时,求证:B=D
    (2)、当PMPN不重合时,直接用等式表示BDMPN之间的数量关系.
  • 26. 对于平面直角坐标系xOy中的点M(ab)和图形G,给出如下定义:将图形G向右(a0)或向左(a<0)平移|a|个单位长度,再向上(b0)或向下(b<0)平移|b|个单位长度,得到图形G' , 称图形G'为图形G关于点M的“伴随图形”.

      

    (1)、如图1.点M(11)

    ①若点E(20) , 点E'为点E关于点M的“伴随图形”,则点E'的坐标为

    ②若点T(tt) , 点T'为点T关于点M的“伴随图形”,且点T'在第一象限,求t的取值范围

    (2)、如图2,A(11)B(21)C(22)D(12) , 图形H是正方形ABCD关于点M的“伴随图形”.当图形H只在第一或第四象限,且与正方形ABCD有公共点时,直接写出a+b的取值范围.