湖北省孝感市云梦县2022-2023学年七年级下册数学期末试卷

试卷更新日期:2023-07-19 类型:期末考试

一、精心选一选(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中只有一个正确选项,请在答题卡上把正确答案的代号涂黑)

  • 1. 下列各数中,有理数是( )
    A、13 B、22 C、3.1415 D、π
  • 2. 下图是一个不等式组中的所有不等式的解集在数轴上的表示,则该不等式组的解集是( )

    A、x1 B、x>1 C、1<x1 D、无解
  • 3. 估计41的值在( )
    A、5和6之间 B、6和7之间 C、7和8之间 D、8和9之间
  • 4. 下列调查中,调查方式选择合理的是( )
    A、为了调查孝感市中小学生的防火意识,选择全面调查 B、为了了解黄香小学某班学生新冠病毒疫苗接种情况,选择抽样调查 C、为了了解云梦县人均收入情况,选择全面调查 D、为了了解一批袋装食品是否含有防腐剂,选择抽样调查
  • 5. 下列说法正确的是( )
    A、a<b , 则3a<2b B、2a>2b , 则a>b C、ac2<bc2 , 则a<b D、a>b , 则ac2<bc2
  • 6. 如图,在ABC中,AB=ACA=36°DE两点分别在边ACBC上,BD平分ABCDEAB.图中的等腰三角形共有( )

    A、2个 B、3个 C、4个 D、5个
  • 7. 《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为( )
    A、{x3=y+2x2+9=y B、{x3=y2x92=y C、{x3=y+2x92=y D、{x3=y2x29=y
  • 8. 已知点P(m1n+2)与点Q(n42m+1)关于y轴对称,则H(mn)在( )
    A、第一象限 B、第二象限 C、第三象限 D、第四象限

二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上)

  • 9.  0.008的立方根是.
  • 10. 某中学为了了解2000名学生的视力情况,从中抽取了200名学生进行检测.则这个抽样调查的样本容量是.
  • 11. 将M(12)先向上平移7个单位长度,再向左平移8个单位长度,得到点N , 则点N的坐标是.
  • 12. 如图,将直角三角板ABC与直尺贴在一起,使三角板ABC的直角顶点CACB=90°)在直尺的一边上,若1=65° , 则2的度数等于.

  • 13. 关于xy的方程组{xy=1+3mx+3y=1+7m的解xy满足条件x+y14 , 则m的最大整数值是.
  • 14. 某种商品的进价为1000元,出售时标价为1500元,由于该商品积压,商店决定打折出售,但要保证利润率不低于20%,则至多可打折.
  • 15. 如图,直线AB经过点E(20)O为坐标原点,C为线段AB上一动点,若A(a3)B(b1)AB=6 , 则OC长度的最小值为.

  • 16. 如图,已知AP平分BACCP平分ACDCPAP与直线BD分别交于点EFEPF=90° , 下列结论:①1+2=90°;②)ACBD;③ABCD;④若AB=BF , 则CD=DE.其中正确的是.(填写所有正确结论的序号)

三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)

  • 17. 计算: (3)2214+273
  • 18. 解方程组:
    (1)、{x+3y=42xy=1
    (2)、{2(x1)=3y12(y+1)=14(x+2)
  • 19. 解不等式组{5x23xx33<x+121 , 并把不等式组的解集表示在数轴上.
  • 20. 云梦县中百超市为了解消费者支付方式的情况,随机抽取了n名消费者进行调查,消费者的支付方式分为以下四种情况:微信、支付宝、现金、其他。该超市将调查结果绘制成如下两幅统计图.

    根据统计图提供的信息解答下列问题:

    (1)、n的值为
    (2)、求扇形统计图中“现金”所在扇形的圆心角度数;
    (3)、根据以上信息补全条形统计图;
    (4)、如果某天共有560名消费者去云梦中百超市购物,估计其中使用微信或者支付宝进行支付的约有多少人?
  • 21. 已知:如图,A=ADEC=E.

    (1)、求证:BECD.
    (2)、若EDC=2CA=30° , 求证:BEAD.
  • 22. 六月份,某电器商店用4200元购进20台A型和10台B型电风扇,分别以200元/台和160元/台的价格进行销售,全部售完后,A型电风扇的总利润比B型电风扇的总利润多600元.(利润=销售收入-进货成本,全年进价、售价均保持不变)
    (1)、求每台A型电风扇和每台B型电风扇的进价分别是多少元?
    (2)、为满足市场需求,七月份该电器商店决定再用不超过6750元的资金采购A型和B型电风扇共50台,且A型电风扇的数量不少于23台,问电器商店有哪几种进货方案?
    (3)、在(2)的条件下,请你通过计算判断,电器商店销售完这50台电风扇能否实现获利2300元的目标?若能,请给出相应的进货方案;若不能,请说明理由.
  • 23. 在一次数学活动课上,同学们用一个含有60°角的直角三角板和两条平行线展开探究.如图,在RtABC中,ACB=90°CAB=60°EFGH.

    (1)、如图1,点CEF上,点AGH上,ABEF交于点D , 若1=20° , 求2的度数;
    (2)、如图2,点CEF上,点AEF上方,点BGH下方,BCGH交于点Q , 作ACE的角平分线并反向延长与CQH的角平分线交于点O , 求O的度数;
    (3)、如图3,点CEF上,点A在直线EFGH之间(不含在EFGH上),点BGH下方,ABBC分别与GH交于点PQ.设FCB=n° , 是否存在正整数mn , 使得APH=mFCB.若存在,请求出mn的值;若不存在,请说明理由.
  • 24. 如图,在平面直角坐标系中,已知点A(08)B(b0)C(0c) , 其中bc满足b6+|c+2|=0.

    (1)、求BC两点的坐标;
    (2)、如图1,M(xy)是直线AB上一点,求出xy之间满足的关系式;
    (3)、如图2,过点C作直线lAB , 已知D(mn)是直线l上的一点,

    ①求出mn之间满足的关系式;

    ②若SACD152 , 求n的取值范围.