(人教版)2023-2024学年九年级数学上册21.2 解一元二次方程 同步分层训练(提升卷)
试卷更新日期:2023-07-15 类型:同步测试
一、选择题
-
1. 用配方法解一元二次方程时,以下变形正确的是( )A、 B、 C、 D、
-
2. 如图是嘉淇用配方法解一元二次方程的具体过程,老师说这个解法出现了错误,则开始出现错误的步骤是( )A、② B、③ C、④ D、⑤
-
3. 用配方法解一元二次方程 , 此方程可变形为( )A、 B、 C、 D、
-
4. 若一元二次方程有两个不相等的实数根,则实数a的取值范围为( )A、 B、且 C、且 D、
-
5. 某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=-8,解出其中一个根是x=-1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是( )A、有两个不相等的实数根 B、有两个相等的实数根 C、有一个根是x=1 D、不存在实数根
-
6. 方程的解是( )A、 B、 C、 , D、 ,
-
7. 关于x的方程的一个根是4,那么m的值是( )A、-3或4 B、或7 C、3或4 D、3或7
-
8. 一元二次方程的根是( )A、 B、 C、 D、
-
9. 设是方程的两个实数根,则的值为( )A、 B、2018 C、 D、2022
-
10. 在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,a,b是关于x的方程x2-7x+c+7=0的两根,那么AB边上的中线长是( )A、 B、 C、5 D、2
二、填空题
-
11. 将方程化为的形式,则的值为 .
-
12. 若一元二次方程有两个相等的实数根,则的值是.
-
13. 关于的一元二次方程的一个根为 , 则另一个根是 .
-
14. 已知关于的一元二次方程有两个实数根、 , 且 , 则.
-
15. 设关于x的方程的两个实数根分别为 , , 若 , 那么实数m的取值是 .
三、解答题
-
16. 用配方法解一元二次方程ax2+bx+c=0(a≠0)
-
17. 已知矩形ABCD两邻边AB、BC的长是关于x的方程的两个实数根.当m为何值时,矩形ABCD的两邻边AB、BC的长相等.
-
18. 已知为方程的根,化简并求值.
-
19. 已知x1 , x2是关于x的方程x2-2x+m-2=0的两个实数根,若3x1+3x2-x1x2=5,求m 的值.
四、综合题
-
20. 如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D,连接CD.以点A为圆心,AC长为半径画弧,交线段AB于点E,连接CE.(1)、求∠DCE的度数.(2)、设BC=a,AC=b.
①线段BE的长是关于x的方程的一个根吗?说明理由.
②若D为AE的中点,求的值.
-
21. 已知关于的一元二次方程.(1)、若方程有实数根,求实数的取值范围;(2)、若方程一实数根为-3,求实数的值.
-
22. 已知关于x的一元二次方程有两个实数根.(1)、求k的取值范围;(2)、取一个合适的k的值,使得方程的解为负整数并求出此时方程的解.
-
23. 已知关于x的方程 ,(1)、求证:方程恒有两不等实根;(2)、若x1 , x2是该方程的两个实数根,且 , 求a的值.