(人教版)2023-2024学年八年级数学上册12.3角的平分线的性质 同步分层训练(培优卷)
试卷更新日期:2023-07-13 类型:同步测试
一、选择题
-
1. 如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EFBC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°∠A,②∠EBO∠AEF,③∠DOC+∠OCB=90°,④设OD=m,AE+AF=n,则S△AEF . 其中正确的结论有( )A、1个 B、2个 C、3个 D、4个2. 如图, , 平分交于点 , , , , 分别是 , 延长线上的点,和的平分线交于点下列结论:;;平分;为定值其中结论正确的有( )A、1个 B、2个 C、3个 D、4个3. 如图,在△ABC中,若分别以AB、AC为边作△ABD和△ACE,且∠DAB=∠CAE=α,AD=AB,AC=AE,DC、BE交于点P,连接AP,则∠APC的度数为( )A、90°﹣α B、90°+α C、90°﹣α D、90°+α4. 如图,点E是的中点, , , 平分 , 下列结论:①;②;③;④.其中正确的是( )A、①②④ B、①②③④ C、②③④ D、①③5. 如图, 的外角 , 的平分线 , 相交于点P, 于E, 于F,下列结论:(1) ;(2)点P在 的平分线上;(3) ;(4)若 ,则 ,其中正确的有( )A、1个 B、2个 C、3个 D、4个6. 如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF,则下列结论中正确的个数( )
①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB;④S△PAC=S△MAP+S△NCP.
A、1个 B、2个 C、3个 D、4个7. 如图 是 的角平分线, 于E,点F,G分别是 , 上的点,且 , 与 的面积分别是10和3,则 的面积是( )A、4 B、5 C、6 D、78. 如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+ ∠C;②当∠C=60°时,AF+BE=AB; ③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是( )A、①② B、②③ C、①②③ D、①③9. 如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=30°,连接AC,BD交于点M,AC与OD相交于E,BD与OA相交于F,连接OM.则下列结论中:①AC=BD;②∠AMB=30°;③△OEM≌△OFM;④MO平分∠BMC.正确的个数有( )
A、4个 B、3个 C、2个 D、1个10. 如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是( )A、①②③ B、①②④ C、①③④ D、②③④二、填空题
-
11. 如图,在△AOB和△COD中,OA=OB , OC=OD(OA<OC),∠AOB=∠COD=α , 直线AC , BD交于点M , 连接OM . 以下结论:①AC=BD;②∠OAM=∠OBM;③∠AMB=α;④OM平分∠BOC . 其中正确的是 . (填序号)12. 如图, ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF,则下列结论中正确的是.
①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB;④S△PAC=S△MAP+S△NCP.
13. 如图,AP,BP分别平分△ABC内角∠CAB和外角∠CBD,连接CP,若∠ACP=130°,则∠APB= .14. 如图,R△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P为CE中点,连结PF,若CP=2,S△BFP=15,则AB的长度为。15. 在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC , ∠CDE=55°.如图,则∠EAB的度数为三、解答题
-
16. 如图,四边形ABCD中AD=AB,∠DAB+∠BCD=180°,求证:CA平分∠DCB17. 如图,在 中, 和 的平分线交于点 ,过点 作 ,交 于 ,交 于 ,若 , ,试求 的值.18. 如图(a),∠DAB+∠ABC+∠BCE=360°(1)、求证:AD∥CE(2)、如图(b),AG、CG分别平分∠BAD、∠BCE,BF∥AG交GC的延长线于F,判断∠ABC与∠F的数量关系,并证明;(3)、如图(c),AN平分∠HAB,BP平分∠ABC,BQ∥AN,CM平分∠BCT交BQ的反向延长线于M,① 的值不变,② 的值不变;其中只有一个结论正确,请择一证明.19. 已知:△ABC中,记∠BAC=α,∠ACB=β.(1)、如图1,若AP平分∠BAC,BP,CP分别平分△ABC的外角∠CBM和∠BCN,BD⊥AP于点D,用α的代数式表示∠BPC的度数,用β的代数式表示∠PBD的度数.
(2)、如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论是否发生变化,补全图形并直接写出你的结论.四、综合题
-
20. 综合与实践:
问题情境:已知是的平分线,P是射线上的一点,点C,D分别在射线 , 上,连接 .
(1)、初步探究:如图1,当 , 时,与的数量关系是;(2)、深入探究:如图2,点C,D分别在射线 , 上运动,且 , 当时,与在(1)中的数量关系还成立吗?请说明理由;(3)、拓展应用:如图3,如果点C在射线上运动,且 , 当时,点D落在了射线的反向延长线上,若点P到的距离为3, , 求的长(直接写出答案).21. 【概念认识】如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.
(1)、【问题解决】
如图②,在△ABC中,∠A=80°,∠B=45°,若∠B的三分线BD交AC于点D,求∠BDC的度数;(2)、如图③,在△ABC中,BP、CP分别是∠ABC邻BC三分线和∠ACB邻BC三分线,且∠BPC=140°,求∠A的度数;(3)、【延伸推广】
在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°(m>54),∠B=54°,直接写出∠BPC的度数.(用含m的代数式表示)