浙江省杭州市2022-2023学年高二下册末考试教学试卷
试卷更新日期:2023-07-06 类型:期末考试
一、单选题(本大题共8小题,共40.0分。在每小题列出的选项中,选出符合题目的一项)
-
1. 直线的一个方向向量是 ( )A、 B、 C、 D、2. 若是空间的一个基底,则也可以作为该空间基底的是 ( )A、 B、 C、 D、3. “巴赫十二平均律”是世界上通用的音乐律制,它与五度相生律、纯律并称三大律制“十二平均律”将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于而早在世纪,明代朱载最早用精湛的数学方法近似计算出这个比例,为这个理论的发展做出了重要贡献若第一个单音的频率为 , 则第四个单音的频率为 ( )A、 B、 C、 D、4. “点在圆外”是“直线与圆相交”的 ( )A、充分不必要条件 B、必要不充分条件 C、充分必要条件 D、既不充分也不必要条件5. 第19届亚运会将于2023年9月23日在杭州开幕,因工作需要,还需招募少量志愿者甲、乙等4人报名参加了“莲花”、“泳镜”、“玉琮”三个场馆的各一个项目的志愿者工作,每个项目仅需名志愿者,每人至多参加一个项目若甲不能参加“莲花”场馆的项目,则不同的选择方案共有 ( )A、6种 B、12种 C、18种 D、24种6. , 两个学科兴趣小组在实验室研究某粒子的运动轨迹,共同记录到粒子的一组坐标信息小组根据表中数据,直接对作线性回归分析,得到:回归方程决定系数小组先将数据按照变换 , 进行整理,再对 , 作线性回归分析,得到:回归方程 , 决定系数根据统计学知识,下列方程中,最有可能是该粒子运动轨迹方程的是 ( )A、 B、 C、 D、7. 设 , , , 是半径为的球的球面上的四个点设 , 则不可能等于 ( )A、3 B、 C、4 D、8. 设椭圆的左右焦点分别为 , , 是椭圆上不与顶点重合的一点,记是的内心直线交轴于点, , 且 , 则椭圆的离心率为 ( )A、 B、 C、 D、
二、多选题(本大题共4小题,共20.0分。在每小题有多项符合题目要求)
-
9. 若函数的导函数的部分图像如图所示,则 ( )A、是的一个极大值点 B、是的一个极小值点 C、是的一个极大值点 D、是的一个极小值点10. 抛掷一枚质地均匀的骰子六个面上的数字是1,2,3,4,5,6,抛掷两次设事件“两次向上的点数之和大于7”,事件“两次向上的点数之积大于”,事件“两次向上的点数之和小于10”,则 ( )A、事件与事件互斥 B、 C、 D、事件与事件相互独立11. 设双曲线 , 直线与双曲线的右支交于点 , , 则下列说法中正确的是 ( )A、双曲线离心率的最小值为 B、离心率最小时双曲线的渐近线方程为 C、若直线同时与两条渐近线交于点 , , 则 D、若 , 点处的切线与两条渐近线交于点 , , 则为定值12. 已知曲线 , , 及直线 , 下列说法中正确的是 ( )A、曲线在处的切线与曲线在处的切线平行 B、若直线与曲线仅有一个公共点,则 C、曲线与有且仅有一个公共点 D、若直线与曲线交于点 , , 与曲线交于点 , , 则
三、填空题(本大题共4小题,共20.0分)
-
13. 的展开式中的系数为 .14. 曲率是衡量曲线弯曲程度的重要指标定义:若是的导函数,是的导函数,则曲线在点处的曲率已知 , 则曲线在点处的曲率为 .15. 已知数列满足 , , 数列的前项和为 , 且 , 则满足的正整数的最小值为 .16. 设函数 , 则使得成立的的取值范围是 .
四、解答题(本大题共6小题,共70.0分。解答应写出文字说明,证明过程或演算步骤)
-
17. 如图,在四面体中, , , , , .(1)、求证: , , , 四点共面.(2)、若 , 设是和的交点,是空间任意一点,用 , , , 表示 .18. 已知等差数列的前项和为 , 且 ,(1)、求数列的通项公式.(2)、若中的部分项组成的数列是以为首项,为公比的等比数列,求数列的前项和 .19. 如图,在三棱柱中,所有棱长均为 , , .(1)、证明:平面平面 .(2)、求平面与平面的夹角的正弦值.20. 第19届亚运会将于2023年9月23日在杭州拉开帷幕,为了更好地迎接亚运会,杭州市政府大举加强了城市交通基础设施的建设至2023年地铁运行的里程数达到516公里,排位全国第六.同时,一张总长464公里、“四纵五横”为骨架、通达“东西南北中”十城区的快速路网也顺利完工准备接待世界各地的来宾现杭州公共出行的主流方式为地铁、公交、打车、共享单车这四种,基本可以覆盖大众的出行需求.(1)、一个兴趣小组发现,来自不同的城市的游客选择出行的习惯会有很大差异,为了验证这一猜想该小组进行了研究请完成下列列联表,并根据小概率值的独立性检验,分析城市规模是否与出行偏好地铁有关?(精确到0.001)
出行方式
国际大都市
中小型城市
合计
偏好地铁
偏好其他
合计
(2)、国际友人来杭游玩,每日的行程分成段,为了更好的体验文化,相邻两段的出行方式不能相同,且选择地铁、公交、打车、共享单车的概率是等可能的已知他每日从酒店出行的方式一定是从地铁开始,记第段行程上坐地铁的概率为 , 易知 , .①试证明为等比数列
②设第次选择共享单车的概率为 , 比较与的大小.
附: , .