山西省吕梁市孝义市2023年中考三模数学试题

试卷更新日期:2023-06-21 类型:中考模拟

一、单选题

  • 1. 2 的相反数是 (     )
    A、2 B、2 C、12 D、12
  • 2. 下列运算正确的是(  )
    A、2a2a3=2a6 B、(a2)3=a6 C、a2+a3=a5 D、(a2b3)2=a4b6
  • 3. 近日,某校组织“自然资源文化创意大赛”,旨在宣传“新时代、美自然、好生活”,大赛分为“平面类”、“视觉类”、“实物类”三个竞赛单元,各单元按成绩由高到低,分别设立金奖5名、银奖10名、铜奖15名、优秀奖30名.甲同学参加了“视觉类”竞赛,并且竞赛成绩进入了前30名,该同学想知道自己能否至少获得银奖,需比较自己的成绩与前30名同学成绩的(  )
    A、平均数 B、众数 C、中位数 D、方差
  • 4. 如图是一个正方体的展开图,在原正方体中,与“祝”字所在面相对的面上的汉字是(  )

      

    A、 B、 C、 D、
  • 5. 某商店经销一种品牌的空气炸锅,其中某一型号的空气炸锅的进价为每台m元,商店将进价提高30%后作为零售价销售,一段时间后,商店又按零售价的8折销售,这时该型号空气炸锅的零售价为(  )
    A、m B、1.3m C、1.04m D、0.8m
  • 6. 如图,在ABCD中,点EAD的中点,对角线ACBD相交于点O , 连接OE , 若ABC的周长是10,则AOE的周长为(  )

      

    A、3 B、5 C、6 D、7
  • 7. 如图,在矩形纸片ABCD中,AB=6BC=8 , 点EAB上一点,点FBC上一点,将矩形沿EF折叠,使点B的对应点G正好落在AD的中点处,则AE的长为(  )

      

    A、56 B、53 C、2 D、3
  • 8. 如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点B正好在反比例函数y=kx的图象上,点A的坐标为(34) , 则k的值为(  )

      

    A、12 B、16 C、24 D、32
  • 9. 如图,AB为半圆O的直径,CD垂直平分半径OAEF垂直平分半径OB , 若AB=4 , 则图中阴影部分的面积等于(  )

      

    A、4π3 B、2π3 C、16π3 D、8π3
  • 10. 如图,矩形ABCD内接于O , 过点AO的切线分别与CD的延长线交于点E , 与CB的延长线交于点F . 若BD=4AE=3 , 则AF的长度为(  )

      

    A、163 B、125 C、5 D、253

二、填空题

  • 11. 化简2xx1+x1x的结果是
  • 12. 不等式组{2x>1x+1>3x5的解集是
  • 13. 现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好都是奇数的概率是
  • 14. 如图所示是地球截面图,其中ABEF分别表示南回归线和北回归线,CD表示赤道,点P表示太原市的位置.现已知地球南回归线的纬度是南纬23°26'(BOD=23°26') , 太原市的纬度是北纬37°32'(POD=37°32') , 而冬至正午时,太阳光直射南回归线(光线MB的延长线经过地心O),则太原市冬至正午时,太阳光线与地面水平线PQ的夹角α的度数是

      

  • 15. 如图,在正方形ABCD中,EAB的中点,将DE绕点E顺时针方向旋转90°得到EF , 分别连接CFAF , 且AFDE交于点M , 若CF=6 , 则DM的长度为

        

三、解答题

  • 16.
    (1)、(2)2×21+(6+3)+|3|
    (2)、解方程:15x=24x+3
  • 17. 已知:如图,点CF在线段AD上,AF=CDABDEB=E . 求证:BC=EF

      

  • 18. “谷子冬播夏收”是近年来农业种植的新技术之一,该技术打破了以往谷子在晚春进行播种的传统,在冬天或者早春进行播种,播种时铺上全生物降解渗水地膜(如左图),能最大限度地保证土壤中的水分不被蒸发,达到“秋雨冬储春夏用”的效果.2022年某农科所种植谷子50亩进行新旧技术对比试验,共收获谷子22000千克,经过对比发现,采用“冬播夏收”技术种植的谷子,平均亩产量比采用传统技术种植的谷子多25%.现已知传统技术种植的谷子平均每亩产量为400千克.

    (1)、求该农科所采用“传统技术”和“冬播夏收”技术各种植谷子多少亩?
    (2)、该农科所将收获的谷子加工成小米后,一部分采用“线上直播带货”的方式进行销售,销售价格为8元/千克,其余部分在实体店进行售卖,售卖价格为10元/千克.已知每1千克谷子能加工成0.8千克的小米,则该农科所要想销售完这批小米后,销售额不低于156000元,求该农科所最多将多少千克的小米以“线上直播带货”的方式进行销售?
  • 19. 2023年5月18日-21日,第七届世界智能大会在天津市举行,本届大会的主题是“智行天下,能动未来”.大会举办期间,某初中计划组织全校学生参观本届大会智能科技展的5个主题展区,主题分别是“人工智能”、“5G+工业互联网”、“智能交通”、“智慧生活”、“数字健康”,为了解同学们的参展意向、学校随机抽取了七年级的部分学生进行了问卷调查(调查问卷如下图所示),所有问卷全部收回,并将调查结果绘制成如下所示的统计图(均不完整).

      

    “第七届世界智能大会”智能科技展

    参观意向调查问卷

    请在下列选项中选择您有参观意向的选项,在其后“[    ]”内打“√”(只能选择其中的一项),非常感谢您的合作.

    A.人工智能[    ]  

    B.5G+工业互联网[ ]

    C.智能交通[    ]  

    D.智慧生活[    ]  

    E数字健康[    ]

    请根据上面的信息,解答下列问题:

    (1)、本次调查所抽取的学生人数有人,所调查的学生中选择“C.智能交通”的学生人数占调查总人数的%.
    (2)、请把条形统计图补充完整.
    (3)、已知该初中总人数为1200人,小明根据调查结果,估计全校参观意向为“人工智能”的学生人数约为:1200×25%=300人.你认为小明估计的结果是否合理?请说明理由.
  • 20. 山西博物院是我省综合性博物馆之一,其主馆造型如斗似鼎,四翼舒展,诠释了“如鸟斯革,如翚斯飞”的审美取向.某校“综合实践”小组在项目化学习中,对主馆进行了实地测量,图2是测量示意图.他们在地面上的A点测得主馆顶部C的仰角为37° , 在台阶顶部B处测得主馆顶部C的仰角为53° , 经过对每个台阶的高度与宽度进行测量,确定台阶顶部B到地面的高度为12米,台阶底部A与顶部B之间的水平距离为30米.现已知台阶顶部平台BP与地面AE平行.请根据以上数据,求出主馆顶部C到地面的垂直高度是多少米?(参考数据:sin37°0.60cos37°0.80tan37°0.75

      

  • 21. 阅读与思考:下面是小宇同学写的一篇数学小论文,请你认真阅读并完成相应学习任务:

    怎样作直角三角形的内接正方形

    如果一个正方形的四个顶点都在直角三角形的三条边上,我们把这样的正方形叫做该直角三角形的内接正方形.那么,怎样作出一个直角三角形的内接正方形呢?我们可以用如下方法:

    如图1,在RtABC中,ACB=90° , 作ACB的角平分线,交斜边AB于点D;然后过点D , 分别作ACBC的垂线,垂足分别为FE , 则DF=DE . (依据1)

    容易证明四边形DFCE是正方形.

      

    用上面方法所作出的正方形,有一个顶点恰好是直角三角形的直角顶点.

    如图2,如果RtABC的内接正方形的一边恰好在斜边AB上,我就可用如下方法,

    第一步:过直角顶点CCDAB , 垂足为D

    第二步,延长ABM , 使得BM=AD , 连接CM

    第三步:作BDC的平分线,交MC于点E

    第四步:过点E分别作DCDB的垂线,垂足分别为PKEPBC于点FEP的延长线交AC交于G

    第五步:分别过点FGAB的垂线,垂足分别为NH

    则四边形NFGH就是RtABC的内接正方形,并且NH恰好在该直角三角形的斜边上.

    理由如下:易证四边形EPDK是正方形,EGAM

    EGAM , ∴CGPCADCEFCMB . (依据2)

    GPAD=CPCDEFBM=CFCB=CPCD

    学习任务:

    (1)、材料中画横线部分的依据分别是:

    依据1:;依据2:

    (2)、请完成图2说理过程的剩余部分.
    (3)、分析图2的作图过程,不难看出是将图2转化成图1去完成的,即先做图形EPDK , 再将正方形EPDK转化为正方形NFGH , 转化的过程可以看作是一种图形变换,这种图形变换是____.(填出字母代号即可).
    A、旋转 B、平移 C、轴对称
  • 22. 综合与实践

    问题情境:数学课上,老师提出如下问题:如图,四边形ABCD是矩形,分别以ADCD为边,在矩形ABCD外侧作正方形ADEFCDMN(点BAF在同一直线上,点BCN在同一直线上).连接FN , 取FN的中点P , 连接BP

    求证:BPFNBP=12FN

      

    解决问题:

    (1)、请你解答老师提出的问题.
    (2)、受到老师所提问题的启发,“兴趣小组”又提出了一个新问题:如图,若四边形ABCD是平行四边形(DAB90°) , 其余条件保持不变,则老师所提问题的结论是否保持不变?请你说明理由.

      

    (3)、“智慧小组”所提的问题是:如图,四边形ABCD是菱形,分别以ADCD为边,在菱形外侧作正方形ADEFCDMN . 连接BD并延长,交FN于点P . 若DAB=30°FN=6 , 求BD的长.请你思考该问题,并直接写出结果.

      

  • 23. 综合与探究:

    如图,已知抛物线y=38x2+94x+6与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.直线BC与抛物线的对称轴交于点E.将直线BC沿射线CO方向向下平移n个单位,平移后的直线与直线AC交于点F,与抛物线的对称轴交于点D.

      

    (1)、求出点A,B,C的坐标,并直接写出直线AC,BC的解析式;
    (2)、当CDB是以BC为斜边的直角三角形时,求出n的值;
    (3)、直线BC上是否存在一点P,使以点D,E,F,P为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.