人教版八年级上册数学进阶课堂小测——12.1全等三角形(三阶)

试卷更新日期:2023-06-18 类型:同步测试

一、单选题

  • 1. 如图,锐角△ABC 中,D 、E 分别是 AB 、AC 边上的点,△ADC≌△ADC',△AEB≌△AEB' , 且C'D∥EB'∥BC , BE 、CD 交于点 F ,若∠BAC = α, ∠BFC = β,则( )

    A、2α+β= 180° B、2β-α= 145° C、α+β= 135° D、β-α= 60°
  • 2. 如图,已知在正方形ABCD中,AB=BC=CD=AD=10厘米,A=B=C=D=90° , 点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动,设运动时间为t秒,当ΔBPE与ΔCQP全等时,t的值为(  )

    A、2 B、2或1.5 C、2.5 D、2.5或2
  • 3. 如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD , 正方形EFGH , 正方形MNPQ的面积分别为S1S2S3 , 若S1S2S3=60,则S2的值是( )

    A、12 B、15 C、20 D、25
  • 4. 如图,N,C,A三点在同一直线上,△ABC中,∠A:∠ABC:∠ACB=3:5:10.若△MNC≌△ABC,则∠BCM的度数为(   )

    A、20° B、25° C、28° D、30°
  • 5. 如果ABC的三边长分别为3,5,7,DEF的三边长分别为3,3x22y1 , 若这两个三角形全等,则x+y=( )
    A、8 B、173或6 C、10 D、193或6
  • 6. 如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且 C'D//EB'//BC ,BE、CD交于点F.若∠BAC=40°,则∠BFC的大小是(   )

    A、105° B、110° C、100° D、120°

二、填空题

  • 7. 如图,在△ABC中,AB=AC=24厘米,∠B=∠C ,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.

  • 8. 如图,在RtΔABC中,C=90°AC=12cmBC=6cm , 一条线段PQ=ABPQ两点分别在线段ACAC的垂线AX上移动,若以ABC为顶点的三角形与以APQ为顶点的三角形全等,则AP的值为.

  • 9. 在平面直角坐标系中,已知A(00)B(30)C(12) , 若BADABC , 则点D的坐标为.
  • 10. 如图,直线PQ经过Rt△ABC的直角顶点C,△ABC的边上有两个动点D、E,点D以1cm/s的速度从点A出发,沿AC→CB移动到点B,点E以3cm/s的速度从点B出发,沿BC→CA移动到点A,两动点中有一个点到达终点后另一个点继续移动到终点.过点D、E分别作DM⊥PQ,EN⊥PQ,垂足分别为点M、N,若AC=6cm,BC=8cm,设运动时间为t,则当t= s时,以点D、M、C为顶点的三角形与以点E、N、C为顶点的三角形全等.

  • 11. 如图, AB=12CAAB 于A, DBAB 于B,且 AC=4 ,P在线段 AB 上,Q在射线 BD 上,若 ΔCAPΔPQB 全等,则 AP=

  • 12. 如图,已知AC平分∠DABCEAB于点EAB=AD+2BE , 则下列结论:①AB+AD= 2AE;②∠DAB+∠DCB=180°;③CD=CB;④SACESBCE=SACD . 其中正确的是

  • 13. 如图,坐标平面上,△ABC≌△DEF,其中A,B,C的对应顶点分别为D,E,F,且AB=BC=5.若A点的坐标为(-3,1),B,C两点的纵坐标都是-3,D,E两点在y轴上,则点F到y轴的距离为.

  • 14. 如图,直线 PQ 经过 RtABC 的直角顶点 CABC 的边上有两个动点 DE ,点 D1cm/s 的速度从点 A 出发沿 ACCB 移动到点 B ,点 E3cm/s 的速度从点 B 出发,沿 BCCA 移动到点 A ,两动点中有一个点到达终点后另一个点继续移动到终点过点 DE 分别作 DMPQ ENPQ ,垂足分别为点 MN .若 AC=6cmBC=8cm ,设运动时间为 t ,则当 t= s 时,以点 DMC 为顶点的三角形与以点 ENC 为顶点的三角形全等.

三、解答题

  • 15. 如图,已知 ΔABCΔADEABC=ADE=90°BCDE 相交于点 F .求证: CF=EF

  • 16.

    如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.

    (1)求△DBE各内角的度数;

    (2)若AD=16,BC=10,求AB的长.