鲁教版(五四制)2022-2023学年度第二学期七年级数学 二元一次方程组的应用 期末复习

试卷更新日期:2023-05-22 类型:复习试卷

一、单选题

  • 1. 《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为(    )
    A、{5x+6y=165x+y=5y+x B、{5x+6y=164x+y=5y+x C、{6x+5y=166x+y=5y+x D、{6x+5y=165x+y=4y+x
  • 2. 《孙子算经》是南北朝时期重要的数学专著,包含“鸡兔同笼”等许多有趣的数学问题.如:“今有木,不知长短,引绳度之,余绳四尺五寸:屈绳量之,不足一尺.木长几何?”大意是:“用一根绳量一根木,绳剩余4.5尺;将绳对折再量木,木剩余1尺.问木长多少?”设木长x尺,绳长y尺,则依题意可列方程组(   )
    A、{y=x+4.5y=2x1 B、{y=x4.5y=2x1 C、{y=x4.50.5y=x+1 D、{y=x+4.50.5y=x1
  • 3. 现有如图①的小长方形纸片若干块,已知小长方形的长为a,宽为b.用3个如图②的图形和8个如图①的小长方形,拼成如图③的大长方形,若大长方形的宽为30cm,则图③中阴影部分面积与整个图形的面积之比为(   ).
    A、15 B、16 C、17 D、18
  • 4.  小华和爸爸玩“掷飞镖”游戏.游戏规则:小华投中1次得5分,爸爸投中1次得3分,两人一共投中30次.经过计算发现爸爸比小华多得2分.设小华投中的次数为x , 爸爸投中的次数为y , 根据题意列出的方程组正确的是(    )
    A、{x+y=303x+2=5y B、{x+y=303x=5y+2 C、{x+y=305x+2=3y D、{x+y=305x=3y+2
  • 5. 为守住国家耕地底线,确保粮食安全,某地区积极相应国家“退林还耕”号召,将该地区一部分林地改为耕地,改变后,耕地面积和林地面积共有2000亩,林地面积是耕地面积的30% . 设改变后耕地面积为x亩,林地面积为y亩,则下列方程正确的是(  )
    A、{x+y=2000xy=30% B、{x+y=2000yx=30% C、{x+y=2000x=y30% D、{x+y=2000y=x30%
  • 6. 幻方历史悠久,传说最早出现在夏禹时代的“洛书”.洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3的方格中,如果满足每行、每列,每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的主格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn的值为(   )

    A、0 B、1 C、3 D、6
  • 7. 《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤;雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则正确的是(   ) 
    A、依题意{5x+6y=14x+y=5y+x B、依题意{5x+6y=15xy=6yx C、一只雀的重量为110 D、一只燕的重量为112
  • 8. 我国古代数学名著《直指算法统宗》中有问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚每人分3个,小和尚3人分一个,正好分完.则小和尚人数为(   )
    A、30 B、45 C、60 D、75
  • 9. 《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出9元,多5元;每人出6元,少4元.问:有多少人?该物品价值多少元?设有x人,物品价值y元,则所列方程组正确的是(    )
    A、{9x5=y6x4=y B、{9x+5=y6x4=y C、{9x5=y6x+4=y D、{9x+5=y6x+4=y
  • 10. 2022年世界杯足球赛举世瞩目,某大型企业为奖励年度优秀员工,预定了小组赛和决赛两个阶段的门票共20张作为奖品,总价为74000元.已知小组赛门票每张2800元,决赛门票每张6400元,设该企业预定了小组赛门票x张,决赛门票y张,根据题意可列方程组为(    )
    A、{x+y=202800x+6400y=74000 B、{x+y=206400x+2800y=74000 C、{xy=202800x+6400y=74000 D、{x+y=206400y=74000+2800x

二、填空题

  • 11. 如图,6块同样大小的小长方形刚好拼接成一个大长方形ABCD,已知AB=15cm,则每个小长方形的长为 cm. 

     

  • 12. 阅读理解:在正方形网格中,格线与格线的交点称为“格点”,各顶点都在格点上的多边形称为“格点多边形”.设小正方形的边长均为1,则“格点多边形”的面积S可用公式S=a+12b1计算,其中a是多边形内部的“格点”数,b是多边形边界上的“格点”数,这个公式称为“皮克定理”.如图所示的6×6的正方形网格,a=16b=12图中格点多边形的面积是21.

    问题解决:已知一个格点多边形的面积S为19,且边界上的点数b是内部点数a的3倍,则a+b=.

  • 13. 我国古代《四元玉鉴》中记载二果问价问题,其内容如下:九百九十九文钱,甜果苦果买千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?其意思为:九百九十九文钱买了甜果和苦果共一千个.已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?若设买甜果x个,买苦果y个,根据题意所列方程组是
  • 14. 2023年元旦期间,小华和家人到汾河公园景区游玩,湖边有大小两种游船,小华发现:2艘大船与3艘小船一次共可以满载游客60人,1艘大船与1艘小船一次共可以满载游客26人.则1艘大船可以满载游客的人数为

  • 15. 我国古代《孙子算经》中有记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”则乘车人数为人.

三、解答题

  • 16. 疫情过后,某中学为学生复课做准备,计划购买消毒水和洗手液两种物品.若购买8瓶消毒水和5瓶洗手液需用220元;若购买4瓶消毒水和6瓶洗手液需用152元.求每瓶消毒水和每瓶洗手液各多少元?
  • 17. 为丰富学生的课余生活,某中学计划购买若干篮球和足球.据了解,买6个篮球和10个足球需要1700元;买10个篮球和20个足球需要3100元.求每个篮球和每个足球的价格分别是多少元?
  • 18. 国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋,已知购买5支毛笔和12副围棋共花费315元,购买8支毛笔和6副围棋共花费240元,求每支毛笔和每副围棋的单价各多少元.

四、综合题

  • 19. 某汉堡店员工小李去两户家庭外送汉堡包和橙汁,第一家送3个汉堡包和2杯橙汁,向顾客收取了32元,第二家送2个汉堡包和3杯橙汁,向顾客收取了28元
    (1)、如果汉堡店员工外送4个汉堡包和5杯橙汁,那么他应收顾客多少元钱?
    (2)、若有顾客同时购买汉堡包和橙汁且购买费用恰好为20元,问汉堡店该如何配送?
  • 20. 随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元。
    (1)、求A、B两种型号的汽车每辆进价分别为多少万元?
    (2)、若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案.
  • 21. 某天,一蔬菜经营户用120元钱从蔬菜批发市场买了黄瓜和西红柿共40千克到市场去卖,黄瓜和西红柿这天的批发价和零售价如下表所示:

    品名

    黄瓜

    西红柿

    批发价(单位:元/千克)

    2.4

    3.2

    零售价(单位:元/千克)

    3.6

    5

    (1)、他从蔬菜批发市场买了黄瓜和西红柿各多少千克?
    (2)、他今天卖完这些黄瓜和西红柿能赚多少钱?
  • 22. 某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)

    (1)、若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;
    (2)、该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<n<136 , 且一个竖式纸箱成本300元,一个横式纸箱成本200元,试求在这一天加工两种纸箱时,a的所有可能值中,成本最低花费多少元?
  • 23. 某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.
    (1)、求1辆甲种客车和1辆乙种客车的租金分别是多少元?
    (2)、学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?