湖北省十堰市房县2023年中考一模诊断训练数学试题
试卷更新日期:2023-05-04 类型:中考模拟
一、单选题
-
1. 下列各数: , , 0, , 其中比小的数是( )A、 B、 C、0 D、2. 如图,是一个几何体的三视图,则这个几何体是( )A、 B、 C、 D、3. 下列计算正确的是( )A、 B、 C、 D、4. 墨斗被认为是“百作手艺祖师爷”鲁班的发明,是木匠用来弹、放各种线记的重要工具,以其“绳之以墨”的功能成为了文人墨客心中正直的化身.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A、垂线段最短 B、线段有两个端点 C、两点之间线段最短 D、两点确定一条直线5. 一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( )A、平均数 B、中位数 C、众数 D、方差6. 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数,羊价各是多少?如果我们设合伙人数为x,则可列方程( )A、 B、 C、 D、7. 如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为( ).A、 B、51 C、 D、1018. 如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10 cm,且tan∠EFC= ,那么该矩形的周长为( )A、72cm B、36cm C、20cm D、16cm9. 如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为( )A、 B、8 C、 D、10. 图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图象上, , , 则正方形ADEF的边长为( )A、1 B、2 C、 D、3
二、填空题
-
11. 国家统计局2月28日发布2022年国民经济和社会发展统计公报.数据显示,2022年,中国经济保持增长,发展质量稳步提升.从总量上看,2022年全年国内生产总值121万亿元,将数字“121万亿”用科学记数法表示出来是.12. 不等式组 , 的解集为.13. 一张小凳子的结构如图所示,AC=BC,∠1=100°, 则∠2=°.14. 如图,每张小纸带的长为 , 用胶水把它们粘贴成一张长纸带,接头粘贴重叠部分的长为.则用20张这样的小纸带粘贴成的纸带的长度为.15. 如图,在△ABC中, , 以AB为直径的分别与BC,AC交于点D,E,过点D作 , 垂足为点F,若的半径为 , , 则阴影部分的面积为.16. 阅读理解:在正方形网格中,格线与格线的交点称为“格点”,各顶点都在格点上的多边形称为“格点多边形”.设小正方形的边长均为1,则“格点多边形”的面积S可用公式计算,其中a是多边形内部的“格点”数,b是多边形边界上的“格点”数,这个公式称为“皮克定理”.如图所示的的正方形网格, , , 图中格点多边形的面积是21.
问题解决:已知一个格点多边形的面积S为19,且边界上的点数b是内部点数a的3倍,则.
三、解答题
-
17. 计算:.18. 化简:19. 已知关于x的一元二次方程x2-(m+3)x+m+2=0.(1)、求证:无论实数m取何值,方程总有两个实数根;(2)、若方程两个根均为正整数,求负整数m的值.20. 目前,全国各地正在有序推进新冠疫苗接种工作.某单位为了解职工对疫苗接种的关注度,随机抽取了部分职工进行问卷调查,调查结果分为:A(实时关注)、B(关注较多)、C(关注较少)、D(不关注)四类,现将调查结果绘制成如图所示的统计图.
请根据图中信息,解答下列问题:
(1)、本次抽样问卷调查的人数是;(2)、图1中C类职工所对应扇形的圆心角度数是 , 并把图2条形统计图补充完整;(3)、若该单位共有职工15000人,估计对新冠疫苗接种工作不关注的人数为;(4)、若D类职工中有3名女士和2名男士,现从中任意抽取2人进行随访,请用树状图或列表法求出恰好抽到一名女士和一名男士的概率.21. 如图,Rt△ABC中,AD是边BC上的中线,过点A作 , 过点D作 , DE与AC、AE分别交于点O、点E,连接EC.(1)、求证:四边形ADCE是菱形;(2)、若 , 求的值.22. 如图,已知 , 以为直径,O为圆心的半圆交于点F,点E为弧的中点,连接交于点M,为的角平分线,且 , 垂足为点H.(1)、求证:是的切线;(2)、若 , , 求的长.23. 某种农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系式为 , 销售量y千克与x之间的关系如图所示.(1)、求y与x之间的函数关系式,并写出x的取值范围;(2)、当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)(3)、为了保证每日的销售额超过480元,请直接写出x的取值范围.24. 如图1,和均为等边三角形,连接BD,CE.(1)、直接写出BD与CE的数量关系为 , 直线BD与CE所夹锐角为度;(2)、将绕点A逆时针旋转至如图2,取BC,DE的中点M,N,连接MN,试问:的值是否随图形的旋转而变化?若不变,请求出该值;若变化,请说明理由;(3)、若 , 当图形旋转至B,D,E三点在一条直线上时,请画出图形,并直接写出MN的值为 .25. 如图,在平面直角坐标系中,抛物线经过点 , 点M为抛物线的顶点,点B在y轴上,直线与抛物线在第一象限交于点.(1)、求抛物线的解析式;(2)、连接 , 点Q是直线上不与A、B重合的点,若 , 请求出点Q的坐标;(3)、在x轴上有一动点H,平面内是否存在一点N,使以点A、H、C、N为顶点的四边形是菱形?若存在,直接写出点N的坐标,若不存在,请说明理由.