冲刺2023中考——数学模拟考场仿真演练卷三

试卷更新日期:2023-03-12 类型:中考模拟

一、单选题(每题3分,共30分)

  • 1. 下列各数是负数的是(    )
    A、(1)2 B、|3| C、(5) D、83
  • 2. 下列运算正确的是(   )
    A、a9a7=a2 B、a6÷a3=a2 C、a2a3=a6 D、(2a2b)2=4a4b2
  • 3. 将直尺和三角板按如图所示的位置放置.若1=40° , 则2度数是(   )

    A、60° B、50° C、40° D、30°
  • 4. 定义新运算a*b:对于任意实数ab满足a*b=(a+b)(ab)1 , 其中等式右边是通常的加法、减法、乘法运算,例如3*2=(3+2)(32)1=51=4 . 若x*k=2xk为实数)是关于x的方程,则它的根的情况是(       )
    A、有一个实数根 B、有两个不相等的实数根 C、有两个相等的实数根 D、没有实数根
  • 5. 将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为(    )

    A、14 B、13 C、12 D、33
  • 6. 如图,点D为ABCAB上任一点,DEBCAC于点E,连接BECD相交于点F,则下列等式中不成立的是(       )

    A、ADDB=AEEC B、DEBC=DFFC C、DEBC=AEEC D、EFBF=AEAC
  • 7. 如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1-k2=(   )

    A、3 B、-3 C、32 D、32
  • 8. 如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,连接AC . 若OA=2 , 则图中阴影部分的面积是(   )

    A、2π332 B、2π33 C、π332 D、π3
  • 9. 如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为323 , 则CD的长为(   )

    A、4 B、43 C、8 D、83
  • 10. 如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x10)B(x20)两点,若2<x1<1 , 则下列四个结论:①3<x2<4 , ②3a+2b>0 , ③b2>a+c+4ac , ④a>c>b

    正确结论的个数为(   )

    A、1个 B、2个 C、3个 D、4个

二、填空题(每空3分,共18分)

  • 11. 今年是中国共青团建团100周年,据统计截止2021年12月31日,全国共有学生团员48310000名,48310000用科学记数法表示为
  • 12. 已知ab=2a+b=3 , 则a2b+ab2的值为
  • 13. 关于x的不等式组 {x+a<23x12x+1 恰有3个整数解,则a的取值范围是.
  • 14. 一副三角板如图放置,A=45°E=30°DEAC , 则1=°

  • 15. 如图,点B的坐标是(0,3),将OAB沿x轴向右平移至CDE , 点B的对应点E恰好落在直线y=2x3上,则点A移动的距离是

  • 16. 如图,点O是正方形ABCD的中心,AB=32RtBEF中,BEF=90°EF过点D,BEBF分别交ADCD于点G,M,连接OEOMEM . 若BG=DFtanABG=13 , 则OEM的周长为

三、解答题(共7题,共72分)

  • 17. 解答题
    (1)、计算:124cos30°+(3.14π)0+|12|
    (2)、先化简,再求值x2x1÷(x+13x1) , 其中x=54
    (3)、求不等式组{2xx+3205x+1>3(x1)的整数解.
  • 18. 教育部在《大中小学劳动教育指导纲要(试行)》中明确要求:初中生每周课外生活和家庭生活中,劳动时间不少于3小时.某走读制初级中学为了解学生劳动时间的情况,对学生进行了随机抽样调查,并将调查结果制成不完整的统计图表,如图:

    平均每周劳动时间的频数统计表

    劳动时间小时

    频数

    t<3

    9

    3≤t<4

    a

    4≤t<5

    66

    t≥5

    15

    请根据图表信息,回答下列问题.

    (1)、参加此次调查的总人数是人,频数统计表中a=
    (2)、在扇形统计图中,D组所在扇形的圆心角度数是°;
    (3)、该校准备开展以“劳动美”为主题的教育活动,要从报名的2男2女中随机挑选2人在活动中分享劳动心得,请用树状图或列表法求恰好抽到一名男生和一名女生的概率.
  • 19. 如图,在Rt△ABC中,∠B=90°,AE平分∠BAC交BC于点E,O为AC上一点,经过点A、E的⊙O分别交AB、AC于点D、F,连接OD交AE于点M.

    (1)、求证:BC是⊙O的切线.
    (2)、若CF=2,sinC=35 , 求AE的长.
  • 20. 某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:
    (1)、探究原理制作测角仪时,将细线一段固定在量角器圆心 O 处,另一端系小重物 G .测量时,使支杆 OM 、量角器90°刻度线 ON 与铅垂线 OG 相互重合(如图①),绕点 O 转动量角器,使观测目标 P 与直径两端点 AB 共线(如图②),此目标 P 的仰角 POC=GON .请说明两个角相等的理由.

    (2)、实地测量

    如图③,公园广场上有一棵树,为了测量树高,同学们在观测点 K 处测得顶端 P 的仰角 POQ=60 ,观测点与树的距离 KH 为5米,点 O 到地面的距离 OK 为1.5米;求树高 PH . ( 31.73 ,结果精确到0.1米)

    (3)、拓展探究

    公园高台上有一凉亭,为测量凉亭顶端 P 距离地面高度 PH (如图④),同学们讨论,决定先在水平地面上选取观测点 EF  ( EFH 在同一直线上),分别测得点 P 的仰角 αβ ,再测得 EF 间的距离 m ,点 O1O2  到地面的距离 O1EO2F 均为1.5米;求 PH  (用 αβm 表示).

  • 21. 阅读材料:

    材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1 , x2 , 则x1+x2ba ,x1x2ca

    材料2:已知一元二次方程x2-x-1=0的两个实数根分别为m,n,求m2n+mn2的值.

    解:∵一元二次方程x2-x-1=0的两个实数根分别为m,n,

    ∴m+n=1,mn=-1,

    则m2n+mn2=mn(m+n)=-1×1=-1

    根据上述材料,结合你所学的知识,完成下列问题:

    (1)、材料理解:一元二次方程2x2-3x-1=0的两个根为x1 , x2 , 则x1+x2;x1x2
    (2)、类比应用:已知一元二次方程2x2-3x-1=0的两根分别为m、n,求 nm+mn 的值.
    (3)、思维拓展:已知实数s、t满足2s2-3s-1=0,2t2-3t-1=0,且s≠t,求 1s1t 的值.
  • 22. 如图1,在正方形ABCD中,E,F分别是BC,CD边上的点(点E不与点B,C重合),且EAF=45°

    (1)、当BE=DF时,求证:AE=AF
    (2)、猜想BE,EF,DF三条线段之间存在的数量关系,并证明你的结论;
    (3)、如图2,连接AC,G是CB延长线上一点,GHAE , 垂足为K,交AC于点H且GH=AE . 若DF=aCH=b , 请用含a,b的代数式表示EF的长.
  • 23. 在平面直角坐标系中,抛物线y=﹣12x2 +(m﹣1)x+2m与x轴交于A,B(4,0)两点,与y轴交于点C,点P是抛物线在第一象限内的一个动点.

    (1)、求抛物线的解析式,并直接写出点A,C的坐标;
    (2)、如图甲,点M是直线BC上的一个动点,连接AM,OM,是否存在点M使AM+OM最小,若存在,请求出点M的坐标,若不存在,请说明理由;
    (3)、如图乙,过点P作PF⊥BC,垂足为F,过点C作CD⊥BC,交x轴于点D,连接DP交BC于点E,连接CP.设△PEF的面积为S1 , △PEC的面积为S2 , 是否存在点P,使得S1S2最大,若存在,请求出点P的坐标,若不存在,请说明理由.