北京市石景山区2022-2023学年高二上学期数学期末试题
试卷更新日期:2023-02-28 类型:期末考试
一、单选题
-
1. 已知直线l的倾斜角为 , 则直线l的斜率为( )A、 B、 C、0 D、12. 双曲线右支上一点A到右焦点的距离为3,则点A到左焦点的距离为( )A、5 B、6 C、9 D、113. 若 , 则的值为( )A、 B、0 C、1 D、24. 在复平面内,复数对应的点Z如图所示,则( )A、 B、 C、 D、5. 已知圆的方程是 , 圆的方程是 , 则圆与圆的位置关系是( )A、外离 B、外切 C、相交 D、内含6. 已知是直线l的方向向量,是平面的法向量.若 , 则下列选项正确的是( )A、 B、 C、 D、7. 如图,在三棱锥中,平面 , , 以A为原点建立空间直角坐标系,如图所示,为平面的一个法向量,则的坐标可能是( )A、 B、 C、 D、8. 两条直线和分别与抛物线相交于不同于原点的A、B两点,若直线经过抛物线的焦点,则( )A、1 B、 C、2 D、39. 设椭圆离心率为e,双曲线的渐近线的斜率小于 , 则椭圆的离心率e的取值范围是( )A、 B、 C、 D、10. 在直四棱柱中,底面为直角梯形, , 点M在该四棱柱表面上运动,且满足平面平面 . 当线段的长度取到最大值时,直线与底面所成角的正弦值是( )A、 B、 C、 D、
二、填空题
-
11. 复数的模长 .12. 正方体的棱长是1,则点到平面的距离为 .13. 已知直线 . 若 , 则实数 .14. 在中,和 . 则的外接圆方程为 .15. 在平面直角坐标系中,已知点M的坐标为 , 点A是圆上的一个动点,点B在射线上,且 , 当点A在圆O上运动时点B的轨迹记作曲线C.对于曲线C,有下列四个结论:
①曲线C是轴对称图形;
②点为曲线C的对称中心;
③曲线C与y轴有2个交点;
④曲线C上的点到点M的距离最大值为4.
其中所有正确结论的序号是 .
三、解答题
-
16. 在中,边上的高所在的直线方程为边所在直线方程为 . 求点A和点C的坐标.17. 如图,在直三棱柱中, , M、N分别是的中点, .(1)、求证:;(2)、求直线与平面所成角的正弦值;(3)、求平面与平面所成角的余弦值.18. 已知椭圆C的两个焦点分别为和 , 点在椭圆上.(1)、求椭圆C的方程;(2)、过点作倾斜角为的直线l交椭圆C于A、B两点,求线段的长度.