广东省河源市紫金县2021-2022学年八年级下学期期中数学试题
试卷更新日期:2023-02-20 类型:期中考试
一、单选题
-
1. 若等腰三角形的两边长分别是2和10,则它的周长是( )A、14 B、22 C、14或22 D、122. 下列各组数中,不能够作为直角三角形的三边长的是( )A、3,4,5 B、5,12,13 C、6,8,10 D、1,2,33. 如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC=7,则△BDC的面积是( )A、2 B、7 C、9 D、144. 如图,若记北京为 地,莫斯科为 地,雅典为 地.若想建立一个货物中转仓,使其到 、 、 三地的距离相等,则中转仓的位置应选在( )A、三边垂直平分线的交点 B、三边中线的交点 C、三条角平分线的交点 D、三边上高的交点5. 给出下列各式:①;②;③;④;⑤;⑥ . 其中不等式的个数是( )A、5 B、2 C、3 D、46. 如图,△ABC是等边三角形,点E是AC的中点,过点E作EF⊥AB于点F,延长BC交EF的反向延长线于点D,若EF=1,则DF的长为( )A、2 B、2.5 C、3 D、3.57. 不等式的非正整数解有( )A、1个 B、2个 C、3个 D、无数多个8. 设 , 则下面不等式正确的是( )A、 B、 C、 D、9. 如图,将绕点A按逆时针方向旋转110°,得到 , 若点在线段BC的延长线上,则的度数为( )A、65° B、70° C、75° D、80°10. 若 , 则的值为( )A、 B、 C、 D、
二、填空题
-
11. 当x时, .12. 已知点是由点A先向上平移4个单位,再向左平移3个单位得到的,则点A的坐标是 .13. 分解因式: .14. 等腰三角形有一个外角是110°,则这个等腰三角形的顶角度数为 .15. 在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为 .16. 直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为 .17. 关于x的不等式组的解集为1<x<3,则a的值为 .
三、解答题
-
18. 已知△ABC在平面直角坐标系中的位置如图所示.(1)、画出△ABC关于原点O对称的△A1B1C1;(2)、直接写出A1 , B1 , C1三点的坐标.19. 解不等式组 , 并把解集表示在数轴上.20. 如图, 与 关于O点中心对称,点E、F在线段AC上,且AF=CE.
求证:FD=BE.
21. 如图,在ABC中,DE垂直平分BC,垂足为E, 交AC于点D,连接BD.若∠A=100°,∠ABD=22°,求∠C的度数.22. 已知 , 求的值.23. 某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
5台
18000元
第二周
4台
10台
31000元
(进价、售价均保持不变,利润=销售总收入进货成本)
(1)、求A、B两种型号的空调的销售单价;(2)、若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?24. 如图,已知AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF.(1)、求证:△ABC是等腰三角形;(2)、若AB=5,BC=6,求DE的长.25. “中国人的饭碗必须牢牢掌握在咱们自己手中.”为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)、购进1件甲种农机具和1件乙种农机具各需多少万元?(2)、若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金既不少于9.8万元又不超过12万元,有哪几种购买方案?(3)、在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?