2023年苏科版数学七年级下册全方位训练卷10.4三元一次方程组
试卷更新日期:2023-02-19 类型:同步测试
一、单选题(每题3分,共24分)
-
1. 下列方程组中,是三元一次方程组的是( )A、 B、 C、 D、2. 解三元一次方程组 要使解法较为简便,首先应进行的变形为( )A、①+② B、①-② C、①+③ D、②-③3. 三元一次方程组 ,的解为( )A、 B、 C、 D、4. 若: , , , 则:代数式的值等于( )A、 B、 C、-15 D、-135. 设“●■▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A、5 B、4 C、3 D、26. 在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用完的情况下,购买方案有( )A、12种 B、14种 C、15种 D、16种7. 某宾馆有单人间,双人间,三人间三种客房供游客选择居住,现某旅游团有20名旅客同时安排游客居住在该宾馆,若每个房间都住满,共租了9间客房,则居住方案( )A、1种 B、2种 C、3种 D、4种8. 小明和小亮在一起探究一个数学活动.首先小亮站立在箱子上,小明站立在地面上(如图1),然后交换位置(如图2),测量的数据如图所示,想要探究的问题有:①小明的身高;②小亮的身高;③箱子的高度;④小明与小亮的身高和.根据图上信息,你认为可以计算出的是( )A、① B、② C、③ D、④
二、填空题(每空3分,共30分)
-
9. 方程组的解是 .10. 已知三元一次方程组 , 则.11. 解方程组 时,消去字母z , 得到含有未知数x , y的二元一次方程组是 .12. 若正数a,b,c满足abc=1, ,则 .13. 在等式 y=ax2+bx+c 中,当 x=-1 时, y=0 ;当 x=2 , y=3 ;当 x=5 时, y=60 ,则a= , b= , c= .14. 已知关于x、y的方程 的解满足 ,则a的值为.15. 有A、B、C三种商品,如果购5件A、2件B、3件C共需513元,购3件A、6件B、5件C共需375件,那么购A、B、C各一件共需元.16. 全球棉花看中国,中国棉花看新疆.新疆长绒棉花是世界顶级棉花,品质优,产量大,常年供不应求.綦江区某超市为了支持新疆棉花,在“五一节”进行促销活动,将新疆棉制成 、 、 三种品牌毛巾混装成甲、乙、丙三种礼包销售,其中甲礼包含1条 品牌毛巾、2条 品牌毛巾;乙礼包含2条 品牌毛巾、2条 品牌毛巾, 2条 品牌毛巾;丙礼包含2条 品牌毛巾、2条 品牌毛巾,每个礼包的售价等于礼包各条毛巾售价之和,5月1日当天,超市对 、 、 三个品牌毛巾的售价分别打8折、 折、 折销售,5月2日恢复原价,小明发现5月1日一个甲礼包的售价等于5月2日一个乙礼包售价的 ,5月1日一个乙礼包的售价比5月2日一个丙礼包售价少2.4元,若 、 、 三个品牌的毛巾原价都是正整数,且 品牌毛巾的原价不超过14元,则小明在5月1日购买的二个甲礼包和一个乙礼包,应该付元.
三、计算题(共6分)
-
17.
四、解答题(共7题,共60分)
-
18. 甲、乙两人同解方程组 ,甲正确解得 ,乙因抄错C解得 ,求A、B、C的值.19. 现有A,B,C三箱橘子,其中A、B两箱共100个橘子,A、C两箱共102个,B,C两箱共106个,求每箱各有多少个?20. 若a,b,c表示三角形的三边,此三角形的周长是18,且a+b=2c,b=2a,求三边长.21. 有一个三位数,个位数字是百位数字的3倍,十位数字比百位数字大5,若将此数的个位数与百位数互相对调,所得新数比原数的2倍多35,求原数.22. 某校为了做好大课间活动,计划用400元购买10件体育用品,备选体育用品及单价如下表(单位:元)
备选体育用品
篮球
排球
羽毛球拍
单价(元)
50
40
25
(1)、若400元全部用来购买篮球和羽毛球拍共10件,问篮球和羽毛球拍各购买多少件?(2)、若400元全部用来购买篮球、排球和羽毛球拍三种共10件,能实现吗?(若能实现直接写出一种答案即可,若不能请说明理由.)23. 我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数 ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数 为“七巧数”.
例如:3254是“七巧数”,因为 , ,所以3254是“七巧数”; 1456不是“七巧数”,因为 ,但 ,所以1456不是“七巧数”.
(1)、若一个“七巧数”的千位数字为 ,则其个位数字可表示为(用含 的代数式表示);(2)、最大的“七巧数”是 , 最小的“七巧数”是;(3)、若 是一个“七巧数”,且 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数” .24. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
已知实数x、y满足 ①, ②,求 和 的值.
本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由① ②可得 ,由① ② 可得 .这样的解题思想就是通常所说的“整体思想”.
解决问题:
(1)、已知二元一次方程组 ,则 , ;(2)、某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)、对于实数x、y,定义新运算: ,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知 , ,那么 .
-