初中数学同步训练必刷题(人教版七年级下册 8.4 三元一次方程组的解法)

试卷更新日期:2023-02-16 类型:同步测试

一、单选题(每题3分,共30分)

  • 1. 若{x=3my=1+2m , 则y用含x的代数式表示为(    )
    A、y=2x+7 B、y=2x+7 C、y=2x5 D、y=2x5
  • 2. 方程组 {x+y=1x+z=0y+z=1 解是(      )
    A、{x=1y=1z=0 B、{x=1y=0z=1 C、{x=0y=1z=1 D、{x=1y=0z=1
  • 3. 若{x=2y=1是方程组{ax+by=712bx+2cy=5的解,则ac的值是( )
    A、1 B、32 C、2 D、52
  • 4. 已知实数x,y,z满足{x+y+z=74x+y2z=2 , 则代数式3(x﹣z)+1的值是( )
    A、﹣2 B、﹣4 C、﹣5 D、﹣6
  • 5. 若方程组{xby+4z=1x2by+3z=3 的解是{x=ay=1z=c , 则a+b+6c的值是(  )
    A、-3 B、0 C、3 D、6
  • 6. 已知方程组{x+y=3y+z=6z+x=9 , 则x+y+z的值是(  )
    A、3 B、4 C、5 D、6
  • 7. 一个三位数,百位上的数与十位上的数之差是2,如果交换十位数字与个位数字的位置,那么所得的数就比原来小36,则百位上的数与个位上的数之差为(    )
    A、5 B、6 C、7 D、8
  • 8. 下列图中所示的球、圆柱、正方体的重量分别都相等,三个天平分别都保持平衡,那么第三个天平中,右侧秤盘上所放正方体的个数应为( )

    A、5 B、4 C、3 D、2
  • 9. 6月18日,最开始是京东的周年庆,2013年后,618就成了各大电商平台的网购节了.在618当日,小梦在某电商平台上选择了甲乙丙三种商品,当购物车内选3件甲,2件乙,1件丙时显示价格为420元;当选2件甲,3件乙,4件丙时显示价格为580元,那么购买甲、乙、丙各两件时应该付款(  )
    A、200元 B、400元 C、500元 D、600元
  • 10. 《孙子算经》中有一个问题:今有甲、乙、丙三人持钱 .甲语乙、丙:“各将公等所持钱半以益我,钱成九十 .”乙复语甲、丙:“各将公等所持钱半以益我,钱成七十 .”丙复语甲、乙:“各将公等所持钱半以益我,钱成五十六 .”若设甲、乙各持钱数为x、y,则丙持钱数不可以表示为(  )
    A、56x2y2 B、1802xy C、1402xy D、140x2y

二、填空题(每题3分,共24分)

  • 11. 已知x=2t5y=2t+7 , 若用含x的代数式表示y,则结果为
  • 12. 解方程组 {x+y+z=12x+2yz=63xy+z=10 时,消去字母z , 得到含有未知数xy的二元一次方程组是
  • 13. 若{x+y=27y+z=33z+x=30 , 则代数式x+y+z的值为
  • 14. 实数x,y,z满足2x+y-3z=5,x+2y+z=-4,请用含x的代数式表示z,即.
  • 15. 小华和小盘到校门外文具店买文件,小华购铅笔2支,练习本2本,圆珠笔1支,共付9元钱;小慧购同样铅笔1支,练习本4本,圆珠笔2支,共付12元钱,若小明去买与她们一样的购铅笔1支、练习本2本、圆珠笔1支,他需付元钱.
  • 16. 已知关于x, y的二元一次方程组{3x+y=2kx2y=k+6有下列说法:①当x与y相等时,解得k=-4;②当x与y互为相反数时,解得k=3;③若4x·8y=32,则k=11;④无论k为何值,x与y的值一定满足关系式x+5y+12=0,其中正确的序号是
  • 17. 如图,每条边上的三个数之和都等于16,么abc这三个数按顺序分别为

  • 18. 端午节有吃粽子的习惯,某商店购进肉粽、蛋黄粽、豆沙粽的数量之比为 9152 .为促进销售,将全部粽子包装成A、B、C三种礼盒.礼盒A有2个肉粽、4个蛋黄粽;礼盒B有1个肉粽、3个蛋黄粽、1个豆沙粽;礼盒C有4个肉粽、2个豆沙粽.则礼盒A、礼盒B、礼盒C的盒数之比为.

三、解答题(共8题,共67分)

  • 19. 解方程组.
    (1)、{xy+z=2x+yz=4x+y+z=6
    (2)、{3xy+z=42x+3yz=12x+y+z=6
  • 20. 已知 y = a x 2 + b x + c ,当 x = 1 时, y = 5 ;当 x = 2 时, y = 14 ;当 x = 3 时, y = 25 .求a,b,c的值.
  • 21. 某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植各种农作物每公顷所需的劳动力人数及投入的设备资金如下表:

    农作物品种

    每公顷所需劳动力

    每公顷所需投入的设备资金

    水稻

    4人

    1万元

    棉花

    8人

    1万元

    蔬菜

    5人

    2万元

    已知该农场计划投入设备资金67万元,应该怎样安排这三种农作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?

  • 22. 购买铅笔7支,作业本3本,圆珠笔1支共需6元;购买铅笔10支,作业本4本,圆珠笔1支共需8元.求购买铅笔11支,作业本5本,圆珠笔2支共需多少元.
  • 23. 一个三位数,如果把它的个位数字与百位数字交换位置,那么所得的新数比原数小99,且各位数字之和为14,十位数字是个位数字与百位数字之和.求这个三位数.
  • 24. 伦敦奥运会,中国运动员获得金、银、铜牌共87枚,奖牌总数位列世界第二.其中金牌比银牌与铜牌之和少11枚,银牌比铜牌多5枚.问金、银、铜牌各多少枚?
  • 25. 在解决“已知有理数x、y、z满足方程组{2x+3yz=5x2y+3z=1 , 求4x+13y9z的值”时,小华是这样分析与解答的.

    解:由①×a得:2ax+3ayaz=5a③,由②×b得:bx2by+3bz=b④.

    ③+④得:(2a+b)x+(3a2b)y+(a+3b)z=5a+b⑤.

    (2a+b)x+(3a2b)y+(a+3b)z=4x+13y9z时,

    {2a+b=43a2b=13a+3b=9 , 解得{a=3b=2

    ∴①×3+×(2) , 得4x+13y9z=5×3+1×(2)=13

    请你根据小华的分析过程,解决如下问题:

    (1)、若有理数a、b满足(3x+4y+2z)×a+(x+6y+5z)×b=12x+2y5z , 求a、b的值;
    (2)、母亲节将至,小新准备给妈妈购买一束组合鲜花,若购买2枝红花、3枝黄花、1枝粉花共需18元;购买3枝红花、5枝黄花、2枝粉花共需28元.则购买1枝红花、3枝黄花、2枝粉花共需多少元?
  • 26. 对于未知数为 xy 的二元一次方程组,如果方程组的解 xy 满足 |xy|=1 ,我们就说方程组的解 xy 具有“邻好关系”.
    (1)、方程组 {x+2y=7x=y+1 的解 xy 是否具有“邻好关系”?说明你的理由:
    (2)、若方程组 {4xy=62x+y=4m 的解 xy 具有“邻好关系”,求 m 的值:
    (3)、未知数为 xy 的方程组 {x+ay=72yx=5 ,其中 axy 都是正整数,该方程组的解 xy 是否具有“邻好关系”?如果具有,请求出 a 的值及方程组的解:如果不具有,请说明理由.