北京市平谷区2022―2023学年九年级上学期教学质量监控数学试卷

试卷更新日期:2023-02-09 类型:期末考试

一、单选题

  • 1. 已知2x=3y(xy≠0),那么下列比例式中成立的是(       )
    A、xy=23 B、x2=y3 C、x3=y2 D、x2=3y
  • 2. 如图,ABC中,D、E分别为ABAC边上的点,DEBC , 若AD=2BD , 则DEBC的值为( )

    A、12 B、32 C、21 D、23
  • 3. 抛物线 y=2x2 向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为( )
    A、y=2(x+1)2+3 B、y=2(x+1)23 C、y=2(x1)23 D、y=2(x1)2+3
  • 4. 如图,每个小正方形的边长为1,点A、B、C均在格点上,则sinB的值是(    )

    A、1 B、34 C、35 D、45
  • 5. 如图,若点A是反比例函数y=2x(x>0)的图象上一点,过点A作x轴的垂线交x轴于点B,点C是y轴上任意一点,则ABC的面积为(    )

    A、1 B、2 C、3 D、4
  • 6. 如图,ABCD中,点E为AD中点,若AEO的面积为1,则BOC的面积为(    )

    A、2 B、3 C、4 D、8
  • 7. “今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”这是《九章算术》中的一个问题,用现代的语言表述为:如图,CDO的直径,弦ABCD于E,CE=1寸,弦AB=10寸,则O的半径为多少寸 (    )

    A、5 B、12 C、13 D、26
  • 8. 如果I表示汽车经撞击之后的损坏程度,经多次实验研究后知道,I与撞击时的速度v的平方之比是常数2,则I与v的函数关系为(    )
    A、正比例函数关系 B、反比例函数关系 C、一次函数关系 D、二次函数关系

二、填空题

  • 9. 函数 y=x3 中,自变量x的取值范围是
  • 10. 已知扇形的圆心角为120° , 半径为3,则它的弧长为
  • 11. 如图,在RtABC中,C=90 , 如果cosA=23AB=6 , 那么AC的长为

  • 12. 如图,在O中,A,B,C是O上三点,如果ACB=30 , 弦AB=5 , 那么O的半径长为

  • 13. 已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则关于x的一元二次方程ax2+bx+c=0的解为

  • 14. 如图,RtABC中,BAC=90ADBC于D,BD=1CD=4 , 则AD的长为

  • 15. 青藏铁路是当今世界上海拔最高、线路最长的高原铁路,因路况、季节、天气等原因行车的平均速度在250~360(千米/小时)之间变化,铁路运行全程所需要的时间(小时)与运行的平均速度(千米/小时)满足如图所示的函数关系,列车运行的平均速度最大和列车运行的平均速度最小时全程所用时间相差小时.

  • 16. 张老师准备为书法兴趣小组的同学购买上课的用具,在文具商店看到商店有A、B两种组合和C、D、E、F商品及它们的售价,组合及单件商品质量一样,若该小组共有12人,其中,笔和本每人各需要一份,砚台2人一方即可,墨汁n瓶(n3).张老师共带了200元钱,请给出一个满足条件的购买方案(购买数量写前面商品代码写后面即可,例如:2A+3B+...;n最多买瓶.

    商品

    价格

    组合A(1支笔+1个本+1方砚台+1瓶墨汁)

    25元

    组合B(1支笔+1个本+1瓶墨汁)

    18元

    C:1支笔

    5元

    D:1个本

    4元

    E:一方砚台

    10元

    F:一瓶墨汁

    12元

三、解答题

  • 17. 计算:|3|+(15)127+2cos30
  • 18. 已知:如图,在ABC中,D为AB边的中点,连接CDACD=BAB=4 , 求AC的长.

  • 19. 已知二次函数y=x22x3

    (1)、求该二次函数的顶点坐标;
    (2)、求该二次函数图象与x轴、y轴的交点;
    (3)、在平面直角坐标系xOy中,画出二次函数y=x22x3的图象;
    (4)、结合函数图象,直接写出当1x2时,y的取值范围.
  • 20. 如图,已知劣弧AB , 如何等分AB?下面给出两种作图方法,选择其中一种方法,利用直尺和圆规完成作图,并补全证明过程.

    方法一:①作射线OAOB

    ②作AOB的平分线OD , 与AB交于点C;

    点C即为所求作.

    证明:∵OC平分AOB

    AOC=BOC

          ▲ (     )(填推理的依据).

    方法二:①连接AB

    ②作线段AB的垂直平分线EF , 直线EFAB交于点C;

    点C即为所求作.

    证明:∵EF垂直平分弦AB

    ∴直线EF经过圆心O,

          ▲ (     )(填推理的依据).

  • 21. 某班同学们来到操场,想利用所学知识测量旗杆的高度.方法如下:如图,线段AB表示旗杆,已知A,C,D三点在一条直线上,首先用1.5米高的测角仪在点C处测得旗杆顶端B的仰角为65 , 在点D处测得旗杆顶端B的仰角为45 , 其中,线段CEDF均表示测角仪,然后测量出CD的距离为5.5米,连接EF并延长交AB于点G.根据这些数据,请计算旗杆AB的长约为多少米.(sin650.9cos650.4tan652.1)

  • 22. 已知:一次函数y=kx2(k0) , 与反比例函数y=mx(m0x>0)的图象交与点A(24)

    (1)、求一次函数和反比例函数的表达式;
    (2)、已知点P(0n)(n>0)过点P作垂直于y轴的直线,与反比例函数的图象交于点B,与一次函数的图象交于点C,横、纵坐标都是整数的点叫做整点.若线段BCAC与反比例函数图象上AB之间的部分围成的图象中(不含边界)恰有3个整点,直接写出n的取值范围.
  • 23. 如图,在RtABC中,ACB=90AD平分BACBC边于点D,DEAB于点E,若BD=5cosB=45 , 求AC的长.

  • 24. 如图,已知锐角ABC , 以AB为直径画O , 交BC边于点M,BD平分ABCO交于点D,过点D作DEBC于点E.

    (1)、求证:DEO的切线;
    (2)、连接OEBD于点F,若ABC=60AB=4 , 求DF长.
  • 25. 某景观公园内人工湖里有一组小型喷泉,水柱从垂直于湖面的水枪喷出,若设距水枪水平距离为x米时水柱距离湖面高度为y米,y与x近似的满足函数关系y=a(xh)2+k(a<0) . 现测量出x与y的几组数据如下:

    x(米)

    0

    1

    2

    3

    4

    y(米)

    1.75

    3.0

    3.75

    4.0

    3.75

    请解决以下问题:

    (1)、求出满足条件的函数关系式;
    (2)、身高1.75米的小明与水柱在同一平面中,设他到水枪的水平距离为m米(m0),画出图象,结合图象回答,若小明被水枪淋到m的取值范围.
  • 26. 在平面直角坐标系xOy中,抛物线y=ax2+bx(a0) , 设抛物线的对称轴为x=t
    (1)、当抛物线过点(20)时,求t的值;
    (2)、若点(2m)(1n)在抛物线上,若m>n , 且amn>0 , 求t的取值范围.
  • 27. 如图,ABC中,D为AC边中点,E为BC延长线上一点,连接ED并延长,使DF=DE , 连接BF

    (1)、依题意补全图形;
    (2)、连接BD , 若CE2+BF2=AB2 , 猜想BDDE的数量关系,并证明.
  • 28. 如图,平面直角坐标系中,矩形ABCD , 其中A(10)B(40)C(42)D(12)定义如下:若点P关于直线l的对称点P'在矩形ABCD的边上,则称点P为矩形ABCD关于直线l的“关联点”.

    (1)、已知点P1(12)、点P2(21)、点P3(41)、点P4(31)中是矩形ABCD关于y轴的关联点的是
    (2)、O的圆心O(721)半径为32 , 若O上至少存在一个点是矩形ABCD关于直线x=t的关联点,求t的取值范围;
    (3)、O的圆心O(m1)(m<0)半径为r,若存在t值使O上恰好存在四个点是矩形ABCD关于直线x=t的关联点,写出r的取值范围,并写出当r取最小值时t的取值范围(用含m的式子表示).