2022-2023学年初数北师大版八年级下册1.3 线段的垂直平分线同步训练必刷题

试卷更新日期:2023-01-13 类型:同步测试

一、单选题(每题3分,共30分)

  • 1. 如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=3cm,则线段PB的长为(  )

    A、6cm B、5cm C、4cm D、3cm
  • 2. 如图,在ΔABC中,AB=AC=20cmDE垂直平分AB , 垂足为E , 交ACD , 若BC=15cm , 则ΔDBC的周长为( )

    A、25cm B、35cm C、30cm D、27.5cm
  • 3. 如图,ABC的周长为19cmDE垂直平分AC , 交AC于点E,交BC于点D,连接ADAE=3cm , 则ABD的周长为( )

    A、13cm B、14cm C、15cm D、16cm
  • 4. 如图,在△ABC中,∠C=85°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,交BC于点D,连接AD,则∠CAD的度数为(    )

    A、50° B、45° C、35° D、30°
  • 5. 如图,ABC中,BAC=115°ABCD的垂直平分线分别交BC于点EF , 则EAF的度数为( )

    A、65° B、50° C、40° D、85°
  • 6. 如图,ACD=90°D=15° , B点在AD的垂直平分线上,若AC=4 , 则AB为(  )

    A、4 B、6 C、8 D、10
  • 7. 如图,A,B,C三个村庄围成了一个三角形,想在ABC的内部建一个超市,且超市到三个村庄的距离相等,则此超市应建在(    )

    A、ABC三条高的交点处 B、ABC三条角平分线的交点处 C、ABC三条边垂直平分线的交点处 D、ABC三条中线的交点处
  • 8. 如图,在RtABC中,ACB=90° , 分别以A点,B点为圆心以大于12AB为半径画弧,两弧交于EF , 连接EFAB于点D , 连接CD , 以C为圆心,CD长为半径作弧,交ACG点,则CGAB=( )

    A、1:5 B、1:2 C、1:3 D、1:2
  • 9. 如图,DE 是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为(     )

    A、16 B、18 C、26 D、28
  • 10. 如图,在矩形ABCD中,AB=2cm , 对角线ACBD相交于点O,DEAC , 垂足为E,OE=CE , 则BC的长为( ).

    A、23cm B、4cm C、25cm D、22cm

二、填空题(每题3分,共30分)

  • 11. 如图,DEABC的边AC的垂直平分线,垂足为点E,交AB于点D,连接CDB=30°CDBCCD=3 , 则AB的长为.

  • 12. 如图,在锐角△ABC中,∠A=75°,DE和DF分别垂直平分边AB、AC,则∠DBC的度数为 °.

  • 13. 如图,DE是△ABC中AC边的垂直平分线,若BC=8cm,AB=10cm,则△EBC的周长为cm.

  • 14. 如图,在△ABC中,AB的中垂线DE交AC于点D,已知BC=10,△BDC的周长为25,则AC=.

  • 15. 如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.

  • 16. 如图,在△ABC中,∠ACB=90°,∠B=30°,AB=10,点D为斜边AB的中点,点P是直角边BC上一动点,连结AP,DP,则AP+DP的最小值为

  • 17. 在ABC中,AB的垂直平分线分别交ABBC于点DEAC的垂直平分线分别交ACBC于点FG , 若BG=9CE=11 , 且AEG的周长为16,求EG=.

  • 18. 如图,已知ΔABC三内角的角平分线交于点D,三边的垂直平分线交于点E,若BDC=130° , 则BEC=度.

  • 19. 如图,在直角三角形ABC中,ACB=90°AB=7 , 点D是AB的中点,点P是斜边AB上的一个动点,FG是线段CP的垂直平分线,Q是FG上的一个动点,则PQ+QD的最小值为.

三、解答题(共6题,共60分)

  • 20. 如图,在△ABC中,AF平分∠BAC交BC于点F,AC的垂直平分线交BC于点E,交AC于点D,∠B=60°,∠C=26°,求∠FAE的度数.

  • 21. 已知在ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D, DM丄AB与M, DN丄AC交AC的延长线于N,你认为BM与CN之间有什么关系?试证明你的发现. 

  • 22. 如图,在ABC中,AB=ACB=30°.

    (1)、作线段AB的垂直平分线MNBC于D(保留作图痕迹).
    (2)、求证:CD=2BD.
  • 23. 如图,在ABC中,C=90°A=30°AB的垂直平分线交ABAC于点D,E.

    (1)、求证:AE=2CE 
    (2)、当DB=1时,求ABC的面积
  • 24. 如图,ABC中,ADBCEF垂直平分AC , 交AC于点F , 交BC于点E , 且AE=AB

    (1)、求证:B=2C
    (2)、求证:BD=DE
    (3)、若AC=13AD=5 , 求ABC的周长.
  • 25. 已知:如图,在ABC中,120°<BAC<180°AD为边BC的垂直平分线,以AC为边作等边三角形ACEACEABC在直线AC的异侧,直线BEDA的延长线于点F , 连接FCAE于点M.

    (1)、求证:FEA=FBA.
    (2)、求EFC的度数.
    (3)、猜想线段FEFAFD之间的数量关系,并证明你的结论.