广东省深圳市龙岗区2022-2023学年七年级上学期期末考试数学试题

试卷更新日期:2022-12-30 类型:期末考试

一、单选题

  • 1. 龙岗某校七年级(1)班期末考试数学的平均成绩是73分,小亮得了90分,记作+17分,若小英的成绩记作-3分,表示小英得了(    )分.
    A、76 B、73 C、77 D、70
  • 2. 2022年11月5日,第23届深圳读书月正式启动,本次读书月以“读时代新篇,创文明典范”为主题,按照文明的阶梯、文化的闹钟、城市的雅集、阅读的节日四大板块,设置了科学、人文、艺术三大专场,深圳读书月自创办以来,累计吸引2.4亿人次参与,将数据2.4亿(240000000)用科学记数法表示为(    )
    A、0.24×109 B、2.4×109 C、2.4×108 D、24×108
  • 3. 下列是正方体展开图的是(   )
    A、 B、 C、 D、
  • 4. 若单项式am+3b212abn是同类项,则mn的值是(    )
    A、-6 B、-4 C、9 D、4
  • 5. 如果 x=1 是关于 x 的方程 3x+2m=9 的解,则 m 的值为(   )
    A、13 B、1 C、3 D、6
  • 6. 下列计算正确的是(    )
    A、2x+3y=5xy B、5x23x2=2 C、x2+x=x3 D、8y+3y=5y
  • 7. 如图,点O在直线AB上,射线ODAOC的平分线,若COB=40° , 则DOC的度数是(    )

    A、20° B、45° C、60° D、70°
  • 8. 有理数a,b在数轴上对应的位置如图所示,则(  )

    A、|a|<|b| B、ab>0 C、a+b<0 D、ab>0
  • 9. “鸡兔同笼”问题是中国古代著名典型趣题之一,大约在1500年前,《孙子算经》中就记载了这个有趣的问题:今有雄(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有多少只鸡和兔?如果我们设有x只鸡,则可列方程(    )
    A、2x+4(35x)=94 B、4x+2(35x)=94 C、2x+4(94x)=35 D、4x+2(94x)=35
  • 10. 如图所示,动点P从第一个数0的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数1的位置,第二次跳动一个单位长度到达数2的位置,第三次跳动一个单位长度到达数3的位置,…,依此规律跳动下去,点P从0跳动6次到达P1的位置,点点P从0跳动21次到达P2的位置,…,点P1P2P3Pn在一条直线上,则点P从0跳动(    )次可到达P12的位置.

    A、595 B、666 C、630 D、703

二、填空题

  • 11. 单项式15a2b的系数为
  • 12. 如图所示的网格式正方形网格,∠ABC∠DEF(填“>”,“=”或“<”)

  • 13. 如图,已知线段AB=12cm , 点C在线段AB上,AC=2BC , 则BC=cm

  • 14. 2022年11月13日,全球首个“国际红树林中心”落地深圳,为了解学生对红树林生态系统的认知水平,龙岗区某校对初中部1200名学生进行了红树林生态系统知识测试,并从中抽取了100名学生的成绩进行统计分析,下列说法正确的是 . (填序号)

    ①1200名学生是总体;②100名学生的测试成绩是总体的一个样本;

    ③样本容量是100名学生;④该校初中部每个学生的测试成绩是个体.

  • 15. 龙岗某校积极响应“双减”政策,开展课后延时服务,七年级某数学兴趣小组在课后综合实践活动中,把一个直角三角尺AOB的直角顶点O放在互相垂直的两条直线PQMN的垂足O处,并使两条直角边落在直线PQMN上,若将AOB绕着点O顺时针旋转一个小于180°的角得到A'OB' , 射线OCB'OM的角平分线且满足A'OC=2A'OM , 则POC=

三、解答题

  • 16. 计算:
    (1)、(1)2(12)+|2|
    (2)、(2131316)×78
  • 17.    
    (1)、化简:3b2(a2+b2)b2
    (2)、先化简再求值:2(a2b14ab2+12b2)+(2a2b3ab2) , 其中a=1b=2
  • 18. 解方程:
    (1)、8y3(3y+2)=6
    (2)、12x3=3x+453
  • 19. 如图,已知线ab , 求作一条线段c , 使c=2ab

    要求:不写画法,保留必要的作图痕迹.

  • 20. 为贯彻落实习近平总书记关于教育、体育的重要论述,深圳市教育局于日前发布《深圳市全面加强和改进新时代学校体育工作的实施意见》并面向社会公开征求意见,某校在七年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查数据进行收集、整理描述和分析,下面给出了部分信息:

    a . “平均每天体育运动时间”的不完全频数分布图:(数据分成五组:0t<3030t<6060t<9090t<120120t<150);

    b.“平均每天体育运动时间”在30≤t<60这一组的是:32,35,40,44,45,46,49,50,53 , 55, 58,59;

    c . “平均每天体育运动时间”在0t<30这一组的频率是0.05;

    d . 小明的“平均每天体育运动时间”是58分钟.

    请根据以上信息,解答下列问题:

    (1)、本次调查一共调查了人;
    (2)、小明的“平均每天体育运动时间”在所有被调查人中排第(按从低到高排序);
    (3)、请补全频数分布直方图;
    (4)、若该校七年级共有600名学生,试估计该校七年级学生平均每天体育运动时间低于60min学生人数.
  • 21. “我没有带你去感受过十月田间吹过的微风,如智者一般的谷穗,我没有带你去见证过这一切,但是亲爱的,我可以让你品尝这样的大米,”这是“东方甄选”带货王董宇辉直播时对五常大米的描述,双11期间,“东方甄选”对五常大米的促销活动是每袋直降5元,会员再享9.5折优惠,若所推销大米每袋成本为60元,每袋会员价的利润率为33%.
    (1)、求“东方甄选”五常大米的标价;
    (2)、“东方甄选”为普惠农民,在利润中直接返现9元/袋给农民,若此时“东方甄选”按会员价售卖了10000袋五常大米,共获利多少元?
  • 22. 在数轴上,点A,B对应的数分别是ab(abab0) , M为线段AB的中点,给出如下定义:若|ab|=3 , 则称A是B的“正比点”,例如a=1b=13时,A是B的“正比点”.
    (1)、若|a+2|+(b6)2=0 , 则a= , b=

    下列说法正确的是(填序号).

    ①A是M的“正比点”;②A是B的“正比点”;

    ③B是M的“正比点”;④B是A的“正比点”.

    (2)、若ab<0 , 且M是A、B其中一点的“正比点”,求ab的值.