2022年全国中考数学真题分类汇编19 四边形及多边形(1)

试卷更新日期:2022-12-29 类型:二轮复习

一、单选题

  • 1. 西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边放置成如图2的位置,从矩的一端A(人眼)望点E,使视线通过点C,记人站立的位置为点B,量出BG长,即可算得物高EG.令BG=x(m), EG=y(m),若a=30cm,b=60cm,AB=1.6m,则y关于x的函数表达式为(   )

    A、y=12x B、y=12x+1.6 C、y=2x+1.6 D、y=1800x+1.6
  • 2. 如图,在菱形纸片ABCD中,E是BC边上一点,将△ABE沿直线AE翻折,使点B落在B'上,连接DB' . 已知∠C=120°,∠BAE=50°,则ADB'的度数为(    )

    A、50° B、60° C、80° D、90°
  • 3. 如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是(   )

    A、若OB=OD,则▱ABCD是菱形 B、若AC=BD,则▱ABCD是菱形 C、若OA=OD,则▱ABCD是菱形 D、若AC⊥BD,则▱ABCD是菱形
  • 4. 如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB=4 , 则AE+OE的最小值是(   )

    A、42 B、25+2 C、213 D、210
  • 5. 如图,将一张长方形纸对折,再对折,然后沿图中虚线剪下,剪下的图形展开后可得到(    )

    A、三角形 B、梯形 C、正方形 D、五边形
  • 6. 如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为323 , 则CD的长为(   )

    A、4 B、43 C、8 D、83
  • 7. 如图,在平面直角坐标系中,矩形ABCD的顶点A在第一象限,B,D分别在y轴上,AB交x轴于点E,AFx轴,垂足为F.若OE=3EF=1 . 以下结论正确的个数是(   )

    OA=3AF;②AE平分OAF;③点C的坐标为(42);④BD=63;⑤矩形ABCD的面积为242

    A、2个 B、3个 C、4个 D、5个
  • 8. 如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是( )

    A、24 B、22 C、20 D、18
  • 9. 如图,在▱ABCD中,AB=8,点E是AB上一点,AE=3,连接DE,过点C作CF∥DE,交AB的延长线于点F,则BF的长为(   )

    A、5 B、4 C、3 D、2
  • 10. 如图,E、F、G、H分别是矩形的边AB、BC、CD、AD上的点,AH=CF,AE=CG,∠EHF=60°,∠GHF=45°.若AH=2,AD=5+3 . 则四边形EFGH的周长为(   )

    A、4(2+6) B、4(2+3+1) C、8(2+3) D、4(2+6+2)

二、填空题

  • 11. 如图,在ABCD中,CAAB , 若B=50° , 则CAD的度数是.

  • 12. 如图,以ABC的三边为边在BC上方分别作等边ACDABEBCF.且点A在BCF内部.给出以下结论:

    ①四边形ADFE是平行四边形;

    ②当BAC=150°时,四边形ADFE是矩形;

    ③当AB=AC时,四边形ADFE是菱形;

    ④当AB=AC , 且BAC=150°时,四边形ADFE是正方形.

    其中正确结论有(填上所有正确结论的序号).

  • 13. 如图,如果要测量池塘两端A,B的距离,可以在池塘外取一点C,连接AC,BC,点D,E分别是AC,BC的中点,测得DE的长为25米,则AB的长为 米.

  • 14. 小张同学家要装修,准备购买两种边长相同的正多边形瓷砖用于铺满地面.现已选定正三角形瓷砖,则选的另一种正多边形瓷砖的边数可以是 . (填一种即可)
  • 15. 如图,点O是正方形ABCD的中心,AB=32RtBEF中,BEF=90°EF过点D,BEBF分别交ADCD于点G,M,连接OEOMEM . 若BG=DFtanABG=13 , 则OEM的周长为

  • 16. 已知正方形ABCD的边长为4,ECD上一点,连接AE并延长交BC的延长线于点F , 过点DDGAF , 交AF于点H , 交BF于点GNEF的中点,MBD上一动点,分别连接MCMN . 若SDCGSFCE=19 , 则MC+MN的最小值为

  • 17. 如图,将边长为3的正方形ABCD沿其对角线AC平移,使A的对应点A′满足AA′=13AC,则所得正方形与原正方形重叠部分的面积是 

  • 18. 如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别在E,F且点F在矩形内部,MF的延长线交BC与点G,EF交边BC于点H.EN=2AB=4 , 当点H为GN三等分点时,MD的长为

  • 19. 矩形ABCD中,AB=8AD=7 , 点E在AB边上,AE=5 . 若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是

三、作图题

  • 20. 如图,是边长为1的小正方形组成的8×8方格,线段AB的端点在格点上.建立平面直角坐标系,使点A、B的坐标分别为(21)(13)

    ⑴画出该平面直角坐标系xOy

    ⑵画出线段AB关于原点O成中心对称的线段A1B1

    ⑶画出以点A、B、O为其中三个顶点的平行四边形.(画出一个即可)

四、解答题

  • 21. 同学们在探索“多边形的内角和”时,利用了“三角形的内角和”.请你在不直接运用结论“n边形的内角和为(n2)180°”计算的条件下,利用“一个三角形的内角和等于180°”,结合图形说明:五边形ABCDE的内角和为540°.

  • 22. 【阅读材料】

    老师的问题:

    已知:如图,AEBF

    求作:菱形ABCD , 使点C,D分别在BFAE上.

    小明的作法:

    (1)以A为圆心,AB长为半径画弧,交AE于点D;

    (2)以B为圆心,AB长为半经画弧,交BF于点C;

    (3)连接CD

    四边形ABCD就是所求作的菱形,

    【解答问题】

    请根据材料中的信息,证明四边形ABCD是菱形.

五、综合题

  • 23. 如图,已知线段AC和线段a.

    (1)、用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)

    ①作线段AC的垂直平分线l , 交线段AC于点O

    ②以线段AC为对角线,作矩形ABCD , 使得AB=a , 并且点B在线段AC的上方.

    (2)、当AC=4a=2时,求(1)中所作矩形ABCD的面积.
  • 24. 在数学兴趣小组活动中,同学们对菱形的折叠问题进行了探究.如图(1),在菱形ABCD中,B为锐角,EBC中点,连接DE , 将菱形ABCD沿DE折叠,得到四边形A'B'ED , 点A的对应点为点A , 点B的对应点为点B.

    (1)、【观察发现】A'DB'E的位置关系是
    (2)、【思考表达】连接B'C , 判断DECB'CE是否相等,并说明理由;
    (3)、如图(2),延长DCA'B'于点G , 连接EG , 请探究DEG的度数,并说明理由;
    (4)、【综合运用】如图(3),当B=60°时,连接B'C , 延长DCA'B'于点G , 连接EG , 请写出B'CEGDG之间的数量关系,并说明理由.
  • 25. 如图,在菱形ABCD中,AB=5,BD为对角线.点E是边AB延长线上的任意一点,连结DE交BC于点F,BG平分∠CBE交DE于点G.

    (1)、求证:DBG=90°.
    (2)、若BD=6DG=2GE

    ①求菱形ABCD的面积.

    ②求tanBDE的值.

    (3)、若BE=AB , 当DAB的大小发生变化时(0°<DAB<180°),在AE上找一点T,使GT为定值,说明理由并求出ET的值.
  • 26. 如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC至点G,使CG=CE,连接DG、DE、FG.

    (1)、求证:△ABE≌△FCE;
    (2)、若AD=2AB,求证:四边形DEFG是矩形.
  • 27. 如图,在平行四边形ABCD中,点E、F在对角线BD上,且BE=DF.求证:

    (1)、△ABE≌△CDF;
    (2)、四边形AECF是平行四边形.
  • 28. 如图,在矩形ABCD中,AB=12BC,点F在BC边的延长线上,点P是线段BC上一点(与点B,C不重合),连接AP并延长,过点C作CG⊥AP,垂足为E.

    (1)、若CG为∠DCF的平分线.请判断BP与CP的数量关系,并证明;
    (2)、若AB=3,△ABP≌△CEP,求BP的长.
  • 29. 已知,点EFGH分别在正方形ABCD的边ABBCCDAD上.

    (1)、如图1,当四边形EFGH是正方形时,求证:AE+AH=AB
    (2)、如图2,已知AE=AHCF=CG , 当AECF的大小有关系时,四边形EFGH是矩形;
    (3)、如图3,AE=DGEGFH相交于点OOEOF=45 , 已知正方形ABCD的边长为16,FH长为20,当OEH的面积取最大值时,判断四边形EFGH是怎样的四边形?证明你的结论.
  • 30. 矩形ABCD中,ABBCk2(k>1),点E是边BC的中点,连接AE,过点E作AE的垂线EF,与矩形的外角平分线CF交于点F.

    (1)、【特例证明】如图(1),当k=2时,求证:AE=EF;

    小明不完整的证明过程如下,请你帮他补充完整.

    证明:如图,在BA上截取BH=BE,连接EH.

    ∵k=2,

    ∴AB=BC.

    ∵∠B=90°,BH=BE,

    ∴∠1=∠2=45°,

    ∴∠AHE=180°-∠1=135°.

    ∵CF平分∠DCG,∠DCG=90°,

    ∴∠3=12∠DCG=45°.

    ∴∠ECF=∠3+∠4=135°.

    ∴……

    (只需在答题卡对应区域写出剩余证明过程)

    (2)、【类比探究】如图(2),当k≠2时,求AEEF的值(用含k的式子表示);
    (3)、【拓展运用】如图(3),当k=3时,P为边CD上一点,连接AP,PF,∠PAE=45°,PF=5 , 求BC的长.
  • 31. 如图,四边形ABCD中,ABDC,AB=BCADDC于点D

    (1)、用尺规作ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)
    (2)、连接AE . 求证:四边形ABCE是菱形.
  • 32. 如图,平行四边形ABCD中,AB=5BC=10BC边上的高AM=4 , 点E为BC边上的动点(不与B、C重合,过点E作直线AB的垂线,垂足为F,连接DEDF

    (1)、求证:ABMEBF
    (2)、当点E为BC的中点时,求DE的长;
    (3)、设BE=xDEF的面积为y,求y与x之间的函数关系式,并求当x为何值时,y有最大值,最大值是多少?
  • 33. 如图,矩形ABCD中,AB=4AD=3 , 点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF , 旋转角等于BAC , 连接CF

    (1)、当点E在BC上时,作FMAC , 垂足为M,求证AM=AB
    (2)、当AE=32时,求CF的长;
    (3)、连接DF , 点E从点B运动到点D的过程中,试探究DF的最小值.
  • 34. “五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB , 用绳子拉直AD后系在树干EF上的点E处,使得ADE在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.

    (参考数据:sin65°0.90cos65°0.42tan65°2.1421.41

    (1)、天晴时打开“天幕”,若α=65° , 求遮阳宽度CD(结果精确到0.1m);
    (2)、下雨时收拢“天幕”,α从65°减少到45°,求点E下降的高度(结果精确到0.1m).
  • 35. 如图,在平行四边形ABCD中,AE平分BACCF平分ACD

    (1)、求证:ABECDF
    (2)、当ABC满足什么条件时,四边形AECF是矩形?请写出证明过程.
  • 36. 如图1,在矩形ABCD中,AB=10AD=8EAD边上的一点,连接CE , 将矩形ABCD沿CE折叠,顶点D恰好落在AB边上的点F处,延长CEBA的延长线于点G

    (1)、求线段AE的长;
    (2)、求证四边形DGFC为菱形;
    (3)、如图2,MN分别是线段CGDG上的动点(与端点不重合),且DMN=DCM , 设DN=x , 是否存在这样的点N , 使DMN是直角三角形?若存在,请求出x的值;若不存在,请说明理由.
  • 37. 如图,在矩形ABCD中,E为AB的中点,连接CE并延长,交DA的延长线于点F.

    (1)、求证:△AEF≌△BEC.
    (2)、若CD=4,∠F=30°,求CF的长.
  • 38. 如图1,在正方形ABCD中,E,F分别是BC,CD边上的点(点E不与点B,C重合),且EAF=45°

    (1)、当BE=DF时,求证:AE=AF
    (2)、猜想BE,EF,DF三条线段之间存在的数量关系,并证明你的结论;
    (3)、如图2,连接AC,G是CB延长线上一点,GHAE , 垂足为K,交AC于点H且GH=AE . 若DF=aCH=b , 请用含a,b的代数式表示EF的长.
  • 39. 如图,矩形ABCD中,AB=15,BC=9,E是CD边上一点(不与点C重合),作AF⊥BE于F,CG⊥BE于G,延长CG至点C′,使C′G=CG,连接CF,AC′.

    (1)、直接写出图中与△AFB相似的一个三角形;
    (2)、若四边形AFCC′是平行四边形,求CE的长;
    (3)、当CE的长为多少时,以C′,F,B为顶点的三角形是以C′F为腰的等腰三角形?
  • 40. 如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.

    (1)、求证:△ABE≌△ADF;
    (2)、若AE=4,CF=2,求菱形的边长.