2022年全国中考数学真题分类汇编4 一次方程问题

试卷更新日期:2022-12-29 类型:二轮复习

一、单选题

  • 1. 某班环保小组收集废旧电池,数据统计如下表.问1节5号电池和1节7号电池的质量分别是多少?设1节5号电池的质量为x克,1节7号电池的质量为y克,列方程组,由消元法可得x的值为(   )
     

    5号电池(节)

    7号电池(节)

    总质量(克)

    第一天

    2

    2

    72

    第二天

    3

    2

    96

    A、12 B、16 C、24 D、26
  • 2. 我国“DF-41型”导弹俗称“东风快递”,速度可达到26马赫(1马赫=340米/秒),则“DF-41型”导弹飞行多少分钟能打击到12000公里处的目标?设飞行x分钟能打击到目标,可以得到方程(    )
    A、26×340×60x=12000 B、26×340x=12000 C、26×340x1000=12000 D、26×340×60x1000=12000
  • 3. 小明解方程x+121=x23的步骤如下:

    解:方程两边同乘6,得3(x+1)1=2(x2)

    去括号,得3x+31=2x2

    移项,得3x2x=23+1

    合并同类项,得x=4

    以上解题步骤中,开始出错的一步是(   )

    A、 B、 C、 D、
  • 4. 在数学活动课上,兴趣小组的同学用一根质地均匀的轻质木杆和若干个钩码做实验.如图所示,在轻质木杆O处用一根细线悬挂,左端A处挂一重物,右端B处挂钩码,每个钩码质量是50g.若OA=20cm,OB=40cm,挂3个钩码可使轻质木杆水平位置平衡.设重物的质量为xg,根据题意列方程得(  )

    A、20x=40×50×3 B、40x=20×50×3 C、3×20x=40×50 D、3×40x=20×50
  • 5. 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是(   )
    A、{yx=4.52xy=1 B、{xy=4.52xy=1 C、{xy=4.5y2x=1 D、{yx=4.5xy2=1
  • 6. 下列说法中,正确的是(       )
    A、ac=bc , 则a=b B、a2=b2 , 则a=b C、ac=bc , 则a=b D、13x=6 , 则x=2
  • 7. 张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x根,下等草一捆为y根,则下列方程正确的是(  )
    A、{5y11=7x7y25=5x B、{5x+11=7y7x+25=5y C、{5x11=7y7x25=5y D、{7x11=5y5x25=7y
  • 8. 《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱,问人数,物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是(  )

    A、{8x+3=y7x4=y B、{8x3=y7x+4=y C、{8x+3=y7x+4=y D、{8x3=y7x4=y
  • 9. 植树节当天,七年级1班植树300棵,正好占这批树苗总数的35 , 七年级2班植树棵数是这批树苗总数的15 , 则七年级2班植树的棵数是(       )
    A、36 B、60 C、100 D、180
  • 10. 方程3x=2x+7的解是(  )
    A、x=4 B、x=﹣4 C、x=7 D、x=﹣7
  • 11. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两,问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为(   )
    A、{6x+4y=485x+3y=38 B、{6x+4y=385x+3y=48 C、{4x+6y=483x+5y=38 D、{4x+6y=383x+5y=48
  • 12. 若代数式x+1的值为6,则x等于(   )
    A、5 B、-5 C、7 D、-7
  • 13. 我国古代数学著作《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为(   )
    A、25 B、75 C、81 D、90
  • 14. 五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为(   )
    A、30 B、26 C、24 D、22
  • 15. 为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有x张桌子,有y条凳子,根据题意所列方程组正确的是()
    A、{x+y=404x+3y=12    B、{x+y=124x+3y=40 C、{x+y=403x+4y=12 D、{x+y=123x+4y=40

二、填空题

  • 16. 《九章算术》中记载,战国时期的铜衡杆,其形式既不同于天平衡杆,也异于称杆衡杆正中有拱肩提纽和穿线孔,一面刻有贯通上、下的十等分线.用该衡杆称物,可以把被称物与砝码放在提纽两边不同位置的刻线上,这样,用同一个砝码就可以称出大于它一倍或几倍重量的物体.图为铜衡杆的使用示意图,此时被称物重量是砝码重量的倍.

  • 17. 如图,圆中扇子对应的圆心角αα<180°)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则βα的度数是

  • 18. 我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三,人出七,不足四,问人数,物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x人,物价为y钱,可列方程组为
  • 19. 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱。问人数、羊价各是多少?若设人数为x,则可列方程为
  • 20. 二元一次方程组{x+2y=5y=2x的解是
  • 21. 《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?”根据题意,可求得1头牛和1只羊共值金 两.
  • 22. 我国古代著作《九章算术》中记载了这样一个问题:“今有共买豕,人出一百,盈一百;人出九十,适足.”其大意是:“今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适.”若设共有x人,根据题意,可列方程为
  • 23. 《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x间房,可求得x的值为
  • 24. 方程组{2x+3y=133x2y=0的解为
  • 25. 有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货吨.
  • 26. 已知{x=1y=2是方程ax+by=3的解,则代数式2a+4b﹣5的值为 .
  • 27. 《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x斛、1个小桶可以盛酒y斛.根据题意,可列方程组为
  • 28. 二元一次方程组 {3x+2y=122xy=1 的解为.
  • 29. 若实数m,n满足 mn5+2m+n4=0 ,则 3m+n= .
  • 30. 阅读材料:整体代值是数学中常用的方法.例如“已知 3ab=2 ,求代数式 6a2b1 的值.”可以这样解: 6a2b1=2(3ab)1=2×21=3 .根据阅读材料,解决问题:若 x=2 是关于x的一元一次方程 ax+b=3 的解,则代数式 4a2+4ab+b2+4a+2b1 的值是.
  • 31. 若(2x+y5)2+x+2y+4=0 , 则xy的值是.
  • 32. 已知二元一次方程组{x+2y=42x+y=5 , 则xy的值为.

三、计算题

  • 33. 解方程组: {xy=22x+y=7
  • 34. 解二元一次方程组:{xy=1x+y=3.
  • 35.              
    (1)、计算:(3)2×31+(5+2)+|2|
    (2)、解方程组:{2xy=3x+y=6

四、解答题

  • 36. 某公司专业生产某种产品,6月初(当月月历如图)接到一份求购5000件该产品的订单,要求本月底完成,7月1日按期交货.

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    经盘点目前公司已有该产品库存2855件,补充原材料后,从本月7日开始生产剩余数量的该产品,已知该公司除周六、周日正常休息外,每天的生产量相同.但因受高温天气影响,从本月10日开始,每天的生产量比原来减少了25件,截止到17日生产结束,库存总量达3830件.如果按照10日开始的生产速度继续生产该产品,能否按期完成订单?请说明理由.如果不能,请你给该公司生产部门提出一个合理的建议,以确保能按期交货.

  • 37. 2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?
  • 38. 我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.
  • 39. 《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?

五、综合题

  • 40. 《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?

    根据译文,解决下列问题:

    (1)、设兽有x个,鸟有y只,可列方程组为
    (2)、求兽、鸟各有多少.