福建省三明市将乐县2022-2023学年八年级上学期期中综合练习数学试题

试卷更新日期:2022-12-26 类型:期中考试

一、单选题

  • 1. 要使二次根式x2有意义,x的值可以是(    )
    A、3 B、1 C、0 D、-1
  • 2. 下列数中,有理数是(    )
    A、-2 B、0.6 C、π D、0.151151115…
  • 3. 下列二次根式中,不能与2合并的是(  )

    A、12 B、8 C、12 D、18
  • 4. 满足下列条件的ABC , 不是直角三角形的是(    )
    A、C=AB B、abc=51213 C、ABC=345 D、b2c2=a2
  • 5. 下列等式成立的是(    )
    A、6÷2=3 B、±0.16=±0.4 C、(6)2=6 D、2+2=22
  • 6. 如果 P(m+32m+4) 在y轴上,那么点P的坐标是(   )
    A、(20) B、(02) C、(10) D、(01)
  • 7. 如图, AB=AC ,则数轴上点C所表示的数为(    ).

    A、5+1 B、51 C、5+1 D、51
  • 8. 若点P(a,-1)关于y轴的对称点为Q(-2,b),则a+b的值是(    )
    A、-1 B、0 C、1 D、2
  • 9. 实数ab在数轴上的位置如图所示,请化简:a2b2=(   )

    A、ab B、a+b C、ab D、a+b
  • 10. 如图,在同一直角坐标系中,直线l1:y=kx和l2:y=(k-2)x+k的位置可能是( )
    A、 B、 C、 D、

二、填空题

  • 11. 已知点P的坐标是(32) , 则点P到y轴的距离是
  • 12. 已知直角三角形的两边长分别为3、4.则第三边长为.
  • 13. 计算:x+1+(y2022)2=0 , 则xy=.
  • 14. 如图所示,有一圆柱,其高为8cm , 它的底面半径为2cm , 在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为cm.(π取3)

  • 15. 若a,b是2022的两个平方根,则a+bab=.
  • 16. 在平面直角坐标系xOy中,点A的坐标为(20) , 动点P的坐标为(m2m1) , 若POA=45° , 则m的值为.

三、解答题

  • 17. 计算
    (1)、50+83+|2|
    (2)、(31)2(32)(3+2).
  • 18. 求x
    (1)、(2x1)3=27
    (2)、(x4)2=25
  • 19. 如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求这个四边形的面积?

  • 20. 已知y与2x﹣3成正比例,且当x=1时,y=﹣1.
    (1)、求y关于x的函数解析式;
    (2)、当y=1时,求x的值.
  • 21. 如图,在正方形网格中,每个小方格的边长都为1,ΔABC各顶点都在格点上.若点A的坐标为(03) , 请按要求解答下列问题:

    ⑴在图中建立符合条件的平面直角坐标系,写出点B和点C的坐标;

    ⑵画出ΔABC关于x轴的对称图形A'B'C'.

  • 22. 在平面直角坐标系中,有 A(-2,a +1), B(a -1,4), C(b - 2,b)三点.
    (1)、当 AB// x轴时,求 A、 B两点间的距离;
    (2)、当CD⊥x轴于点 D,且CD = 1时,求点C的坐标.
  • 23. 如图,长方形纸片ABCD中,AB=8,BC=10,折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕,请回答下列问题:

    (1)、求线段DE的长度;
    (2)、若点P为线段AE上的一个动点,连接BP和FP,则线段BP+FP的最小值是 
  • 24. 如图所示,直线y=34x+3分别与x轴、y轴分别交于点A和点B,C是OB上一点,若将ABC沿AC折叠,点B恰好落在x轴上的点B' 处.

    (1)、求:点A,点B的坐标;
    (2)、点B' , 点C的坐标. 
    (3)、若P在x轴上运动且PB'C是等腰三角形,直接写出所有符合条件的的点P的坐标.
  • 25. 在平面直角坐标系xOy中,直线l1经过A(0, 2), B(1, 0)两点,直线l2的解析式是y=kx+k (k≠0).
    (1)、求直线l1的解析式;
    (2)、试说明直线l2必经过定点, 并求出该定点的坐标;
    (3)、将线段AB沿某个方向平移得到线段EF,其中E是点A的对应点.设点E的坐标为(m, n), 若点F在直线l2上,试说明点(-2, 2)在n关于m的函数图象上.