广西壮族自治区柳州市2021-2022学年八年级上学期期末数学试题

试卷更新日期:2022-12-14 类型:期末考试

一、单选题

  • 1. 下面是科学防控新冠知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是(   )
    A、 B、 C、 D、
  • 2. 如图,测得PA=100mPB=90m , 那么点A与点B之间的距离可能是( )

    A、10m B、120m C、190m D、220m
  • 3. 下列计算中,正确的是(    )
    A、(2)0=1 B、21=2 C、a3×a2=a6 D、(12a)2=14a2
  • 4. 在RtABC中,C=90°BAC的角平分线ADBC于点DBC=7BD=4 , 则点DAB的距离是( )

    A、2 B、3 C、4 D、5
  • 5. 在 ΔABC 中,已知 ABC=123 ,则三角形的形状是(  )
    A、钝角三角形 B、直角三角形 C、锐角三角形 D、无法确定
  • 6. 如果把分式xx2y中的x,y都扩大3倍,那么分式的值(    )
    A、扩大3倍 B、扩大2倍 C、缩小3倍 D、不变
  • 7. 下列由左边到右边的变形,属于因式分解的是(    )
    A、(a+1)(a1)=a21 B、a2+a+1=a(a+1)+1 C、am+bm=m(a+b) D、a2+2a+4=(a+2)2
  • 8. 如果9x2+kx+1是某个整式的完全平方式,那么常数k的值为(    )
    A、6 B、-6 C、±6 D、18
  • 9. 如图,在ABC中,AB=AC=4,∠B=∠C=15°.则△ABC的面积为(    )

    A、16 B、4 C、6 D、8
  • 10. 如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,连接BD和CE相交于点P,交AC于点M,交AD与点N.下列结论:①BD=CE;②∠BPE=180°−2α;③AP平分∠BPE;④若α=60°,则PE=AP+PD.其中一定正确的结论的个数是( )

    A、1 B、2 C、3 D、4

二、填空题

  • 11. 新冠病毒的直径约为0.000000003m,数据0.000000003m可用科学记数法表示为.
  • 12. 若分式2a+1有意义,则a的取值范围是 .

  • 13. 一个多边形的内角和是720°,这个多边形的边数是
  • 14. 如图,在 ABCDFE 中, EB=CFAB=DF ,当添加条件时,就可得到 ABCDFE .(只需填写一个你认为正确的条件)

  • 15. 如图,在△ABC中,AB=AC,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E,在点D的运动过程中,△ADE的形状也在改变,当△ADE是等腰三角形时,∠BDA的度数是.

  • 16. 如图,在 RtABC 中, ACB=90°AC=BC ,以BC为边在BC的右侧作等边 BCD ,点EBD的中点,点PCE上一动点,连结APBP . 当 AP+BP 的值最小时, CBP 的度数为

三、解答题

  • 17. 分解因式∶3m2+18m+27
  • 18. 计算: (x+5)(x1)+(x2)2
  • 19. 解方程∶xx+3+6x29=xx3
  • 20. 如图,在平面直角坐标系中,A(15)B(10)C(43).

    (1)、ABC的面积=
    (2)、在平面直角坐标系中作出ABC关于y轴对称的A1B1C1 , 并写出点A1B1C1的坐标.
  • 21. 如图,已知ABC中,AB=AC.MBC的中点,DE分别是ABAC边上的且AD=AE.

    求证:MD=ME.

  • 22. 随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高,今年袋装柳州螺蛳粉快递量突破1亿件.若每人每小时工作量相同,使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.使用智能分拣设备后,每人每小时可分拣快件多少件?
  • 23. 已知等边△ABC的边长为4cm,点P,Q分别是直线AB,BC上的动点.

    (1)、如图1,当点P从顶点A沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为lcm/s,到达终点时停止运动.设它们的运动时间为t秒,连接AQ,PQ.

    ①当t=2时,求∠AQP的度数.

    ②当t为何值时△PBQ是直角三角形?

    (2)、如图2,当点P在BA的延长线上,Q在BC上,若PQ=PC,请判断AP,CQ和AC之间的数量关系,并说明理由.