浙江省慈溪市中部教研共同体2022-2023学年九年级上学期期中质量检测数学试题
试卷更新日期:2022-12-14 类型:期中考试
一、选择题(本大题共10小题,共40.0分。)
-
1. 抛物线y=2x2的开口方向是( )A、向下 B、向上 C、向左 D、向右2. “网上任意买一张《长津湖》的电影票,票上的排号恰好是奇数”,这个事件是( )A、必然事件 B、不可能事件 C、确定事件 D、随机事件3. 已知⊙O的半径为5cm,点P是⊙O外一点,则OP的长可能是( )A、3cm B、4cm C、5cm D、6cm4. 将抛物线向右平移3个单位得到的抛物线表达式是( )A、 B、 C、 D、5. 如图,在半径为的中,弦 , 是弦上一动点,则的最小值为( )A、3 B、 C、2 D、16. 已知抛物线经过点 , 则该抛物线与轴的另一个交点是( )A、 B、 C、 D、7. 如图,将绕点逆时针旋转至 , 使 , 若 , 则旋转角的度数是( )A、 B、 C、 D、8. 如图,点、、是上的点, , 连结交于点 , 若 , 则的度数为( )A、 B、 C、 D、9. 已知二次函数 的图象经过点 , ,且 ,则 的值不可能是( )A、-2 B、 C、0 D、10. 已知抛物线与轴所围成的封闭区域内含边界 , 横、纵坐标均为整数的点有且只有7个,则的取值范围为( )A、 B、 C、 D、
二、填空题(本大题共6小题,共30.0分)
-
11. 一枚质地均匀的骰子,六个面分别标有数字1,2,3,4,5,6,抛掷一次,恰好出现“正面朝上的数字是5”的概率是。12. 如图,在平面直角坐标系中,点 , , 都在格点上,过 , , 三点作一圆弧,则圆心的坐标是.13. 如图是某同学的微信二维码,用黑白打印机打印于边长为的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.4左右,据此可以估计黑色部分的总面积约为.14. 如图,△ABC内接于⊙O,AD是⊙O直径,若∠ABC=50°,则∠CAD=度.15. 如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高为14的奖杯,杯体轴截面是抛物线的一部分,则杯口的口径为.16. 已知顶点为的抛物线与顶点为的抛物线交于 , , 则四边形的周长为.
三、解答题(本大题共8小题,共80.0分。)
-
17. 已知二次函数的图象经过点 , .(1)、求这个二次函数的表达式;(2)、求这个图象的顶点坐标.18. 一个不透明的布袋中装有若干个球,它们除颜色不同外,其余完全相同,其中有1个白球和若干个红球.(1)、如果摸一次球,摸到白球的概率是 , 求红球的个数.(2)、在(1)的条件下,如果从中任意摸出一个球,记下颜色后放回,搅匀,再摸出一个球,则两个球都是红色的概率是多少?请画树状图或列表分析.19. 如图,由小正方形构成的网格,经过 , , 三点,仅用无刻度的直尺按要求画图.保留作图痕迹(1)、在图(1)中画弦的弦心距;(2)、在图(2)中的圆上找一点 , 使点是的中点.20. 如图,抛物线过点和点.(1)、求该抛物线的函数表达式.(2)、将该抛物线上的点向右平移至点 , 当点落在该抛物线上且位于第一象限时,求的取值范围.21. 如图,是半圆的直径,、是半圆上的两点,且 , 与交于点.(1)、若 , 求的度数;(2)、若 , , 求的长.22. 在新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)、直接写出小明销售该类型口罩销售量袋与销售单价元之间的函数关系式;每天所得销售利润元与销售单价元之间的函数关系式.(2)、若小明想每天获得该类型口罩的销售利润2000元时,则销售单价应定为多少元?(3)、求当销售单价定为多少元时,利润最大,最大利润是多少?23. 如图,抛物线:与轴交于点抛物线:与轴交于点 , 抛物线与相交于点 , 点的横坐标为过点作轴的平行线交抛物线于点 , 交抛物线于点.(1)、求抛物线和的对称轴;(2)、求线段的长;(3)、直线与抛物线和分别交于 , 两点.若 , 请直接写出的值.24. 如图1, , 是半圆上的两点,若直径上存在一点 , 满足 , 则称是的“幸运角”.(1)、如图2,是的直径,弦 , 是上一点,连结交于点 , 连结 , 是的“幸运角”吗?请说明理由;(2)、设的度数为 , 请用含的式子表示的“幸运角”度数;(3)、在(1)的条件下,直径 , 的“幸运角”为.
①如图3,连结 , 求弦的长;
②当时,求的长.