浙教版备考2023年中考数学一轮复习16.一元一次方程的应用(1)

试卷更新日期:2022-11-26 类型:一轮复习

一、单选题(每题3分,共30分)

  • 1. 用含盐16%的甲种盐水和含盐25%的乙种盐水,配制成含盐20%的盐水36kg,则需甲种盐水(   )kg.
    A、20 B、16 C、26 D、10
  • 2. 我国古代数学著作《孙子算经》中有“鸡兔同笼"问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?“通过计算鸡和兔的数众分别为(    )
    A、23和12 B、12和23 C、24和12 D、12和24
  • 3. 如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P,则P的值为(    )
    A、21 B、24 C、27 D、36
  • 4. 某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺母,则下列方程正确的是(       )
    A、2×1000(26x)=800x B、2×800(26x)=1000x C、1000(26x)=2×800x D、800(26x)=2×1000x
  • 5. 我国古代数学著作《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为(   )
    A、25 B、75 C、81 D、90
  • 6. 松桃县对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设这段公路的长是x米,则根据题意列出方程正确的是(   )
    A、x5+1+21=x6+1 B、x5+121=x6+1 C、x+15+21=x+16 D、x+1521=x+16
  • 7. 某项工程,甲单独完成需要45天,乙单独完成需要30天,若乙先单独做22天,剩下的由甲去完成,问:甲、乙一共用几天可完成全部工作?设甲、乙共用x天完成,则符合题意的方程是(   )
    A、x2245+2230=1 B、x+2230+x45=1 C、x+2245+2230=1 D、x30+x2245=1
  • 8. 在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6 , 6能被6整除;643不是“好数”,因为6+4=10 , 10不能被3整除.则百位数字比十位数字大5的所有“好数”的个数是(   )
    A、8 B、7 C、6 D、5
  • 9. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是(   )
    A、x=10060100x B、x=100+60100x C、10060x=100+x D、10060x=100x
  • 10. 我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完.如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程(       )
    A、3x+13(100x)=100 B、3x+13(100-x)=100 C、3x+3(100-x)=100 D、13x+(100-x)=100

二、填空题(每题4分,共24分)

  • 11. 有一列数按一定的规律排列为-1,3,-5,7,-9,11, , 如果其中三个相邻的数之和为199,那么这三个相邻数中间的数为.
  • 12. 已知一个多边形的每一个内角都是其相邻外角的5倍,则该多边形的边数为.
  • 13. 我国古代数学书《四元玉鉴》中有这样一个问题:“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱”.计算可得甜果的个数是
  • 14. 一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若单独租用甲车,15天可以完成任务;若单独租用乙车,30天可以完成任务.已知两车合运,共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.在租甲、乙两车,单独租甲车,单独租乙车这三种方案中,租金最少是元.
  • 15. 七年级男生入住一楼,如果每间住6人,恰好空出一间;如果每间住5人就有4人没有房间住.那么一楼共有间.
  • 16. 某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元,如果购买甲、乙两种奖品共花费了650元,设购买了甲种奖品x件,依题意列方程得

三、解答题(共8题,共66分)

  • 17. 某公司专业生产某种产品,6月初(当月月历如图)接到一份求购5000件该产品的订单,要求本月底完成,7月1日按期交货.

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    经盘点目前公司已有该产品库存2855件,补充原材料后,从本月7日开始生产剩余数量的该产品,已知该公司除周六、周日正常休息外,每天的生产量相同.但因受高温天气影响,从本月10日开始,每天的生产量比原来减少了25件,截止到17日生产结束,库存总量达3830件.如果按照10日开始的生产速度继续生产该产品,能否按期完成订单?请说明理由.如果不能,请你给该公司生产部门提出一个合理的建议,以确保能按期交货.

  • 18. 2022年是共青团建团100周年.1922年5月5日,中国社会主义青年团第2次全国代表大会在广州召开,标志中国青年团组织的正式成立.从此,青年团作为中国共产党的助手和后备军,在党的领导下团结带领全国各族青年,积极投身到振兴中华,实现中华民族伟大复兴的事业中.在5月日历表上随意用一个正方形方框圈出4个数(如图所示),若圈出的这四个数的和是64,求这个最小数(请用方程知识解答).

  • 19. 某工程队修路,第一天修了600米,第二天修了全长的14 , 这时还剩余全长的45%没有修,则这条路的全长的是多少?
  • 20. 某车间有技术工人50人,平均每天每人可加工甲种部件18个或乙种部件14个,1个甲种部件和2个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?
  • 21. 列方程解应用题:

    暑假,某校七年级(1)班组织学生去公园游玩,该班有50名同学组织了划船活动,如图是划船须知.他们一共租了10条船,并且每条船都坐满了人,

    (1)、大、小船各租了几条?
    (2)、他们租船一共花了多少元钱?
  • 22. 电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:
    (1)、刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.

    ①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.(

    ②刘三姐的姐妹们给出的答案是唯一正确的答案.(

    ③该歌词表达的数学题的正确答案有无数多种.(

    (2)、若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.
  • 23. 某垃圾处理厂,对不可回收垃圾的处理费用为90元/吨,可回收垃圾的分拣处理费用也为90元/吨,分拣后再被相关企业回收,回收价格如表:

    垃圾种类

    纸类

    塑料类

    金属类

    玻璃类

    回收单价(元/吨)

    500

    800

    500

    200

    据了解,可回收垃圾占垃圾总量的60%,现有A,B,C三个小区12月份产生的垃圾总量分别为100吨,100吨和m吨

    (1)、已知A小区金属类垃圾质量是塑料类的5倍,纸类垃圾质量是塑料类的2倍.设塑料类的质量为x吨,则A小区可回收垃圾有吨,其中玻璃类垃圾有吨(用含x的代数式表示),

     

    (2)、B小区纸类与金属类垃圾总量为35吨,当月可回收垃圾回收总金额扣除所有垃圾处理费后,收益16500元.求12月份该小区可回收垃圾中塑料类垃圾的质量.
    (3)、C小区发现塑料类与玻璃类垃圾的回收总额恰好相等,所有可回收垃圾的回收总金额为12000元,设该小区塑料类垃圾质量为a吨,求a与m的数量关系.
  • 24. 有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.
    (1)、求每箱装多少件产品?
    (2)、现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?
    (3)、若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).