2023年春季浙教版数学九年级下册第一章 《解直角三角形》单元检测B

试卷更新日期:2022-11-20 类型:单元试卷

一、单选题(每题3分,共30分)

  • 1. 如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为 α ,则高BC是(   )

    A、12sinα B、12cosα C、12sinα D、12cosα
  • 2. 如图,ADABC的高,若BD=2CD=6tanC=2 , 则边AB的长为( )

    A、32 B、35 C、37 D、62
  • 3. 如图,在正方形方格纸中,每个小正方形的边长都相等,A,B,C,D都在格点处,AB与CD相交于点P,则cos∠APC的值为(   )

    A、35 B、255 C、25 D、55
  • 4. 如图,已知点B,D,C在同一直线的水平,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,CD=a , 则建筑物AB的高度为( )

    A、atanαtanβ B、atanβtanα C、atanαtanβtanαtanβ D、atanαtanβtanβtanα
  • 5. 如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为( )

    A、cosθ(1+cosθ) B、cosθ(1+sinθ) C、sinθ(1+sinθ) D、sinθ(1+cosθ)
  • 6. 如图是某商场营业大厅自动扶梯的示意图.自动扶梯 AB 的倾斜角为 37° ,大厅两层之间的距离 BC 为6米,则自动扶梯 AB 的长约为( sin37°0.6cos37°0.8tan37°0.75 )(   ).

    A、7.5米 B、8米 C、9米 D、10米
  • 7. 图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形 OABC .若 AB=BC=1 . AOB=α ,则 OC2 的值为(   )

    A、1sin2α+1 B、sin2α+1 C、1cos2α+1 D、cos2α+1
  • 8. 如图, OABC 的外接圆,CDO 的直径.若 CD=10 ,弦 AC=6 ,则 cosABC 的值为(    )

    A、45 B、35 C、43 D、34
  • 9. 如图,等腰△ABC的面积为23 , AB=AC,BC=2.作AE∥BC且AE=12BC.点P是线段AB上一动点,连接PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B点时,点M的运动路径长为(   )

    A、3 B、3 C、23 D、4
  • 10. 如图,在 RtABC 中, C=90°AC=6BC=8 ,将 ABC 绕点A逆时针旋转得到 A'B'C' ,使点 C' 落在AB边上,连结 BB' ,则 sinBB'C' 的值为(    )

    A、35 B、45 C、55 D、255

二、填空题(每题3分,共18分)

  • 11. 如图,校园内有一株枯死的大树AB , 距树12米处有一栋教学楼CD , 为了安全,学校决定砍伐该树,站在楼顶D处,测得点B的仰角为45°,点A的俯角为30°,小青计算后得到如下结论:①AB18.8米;②CD8.4米;③若直接从点A处砍伐,树干倒向教学楼CD方向会对教学楼有影响;④若第一次在距点A的8米处的树干上砍伐,不会对教学楼CD造成危害.其中正确的是.(填写序号,参考数值:31.721.4

  • 12. 如图,在矩形ABCD中,AB=2BC=2 , 将线段AB绕点A按逆时针方向旋转,使得点B落在边CD上的点B'处,线段AB扫过的面积为

  • 13. 如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30° , 已知斜坡的斜面坡度i=13 , 且点A,B,C,D,在同一平面内,小明同学测得古塔AB的高度是

  • 14. 如图,在 ABC 中, AC=3BC=4 ,点D、E分别在 CACB 上,点F在 ABC 内.若四边形 CDFE 是边长为1的正方形,则 sinFBA= .

  • 15. 如图,从楼顶 A 处看楼下荷塘 C 处的俯角为 45° ,看楼下荷塘 D 处的俯角为 60° ,已知楼高 AB30 米,则荷塘的宽 CD米.(结果保留根号)

  • 16. 如图,把边长为1:2的矩形ABCD沿长边BC,AD的中点E,F对折,得到四边形ABEF,点G,H分别在BE,EF上,且BG=EH=25BE=2,AG与BH交于点O,N为AF的中点,连接ON,作OM⊥ON交AB于点M,连接MN,则tan∠AMN=.

三、解答题(共9题,共72分)

  • 17. 计算: 6sin45°|12|8×(π2021)0(12)2 .
  • 18. 计算:(﹣1)3+| 2 1|﹣( 122+2cos45° 8 .
  • 19. 旗杆及升旗台的剖面如图所示,MN、CD为水平线,旗杆AB⊥CD于点B.某一时刻,旗杆AB的一部分影子BD落在CD上,另一部分影子DE落在坡面DN上,已知BD=1.2m,DE=1.4m.同一时刻,测得竖直立在坡面DN上的1m高的标杆影长为0.25m(标杆影子在坡面DN上),此时光线AE与水平线的夹角为80.5°,求旗杆AB的高度.(参考数据:sin80.5°≈0.98,cos80.5°≈0.17,tan80.5°≈6)

  • 20. 随着我国科学技术的不断发展,科学幻想变为现实.如图1是我国自主研发的某型号隐形战斗机模型,全动型后掠翼垂尾是这款战斗机亮点之一.图2是垂尾模型的轴切面,并通过垂尾模型的外围测得如下数据,BC=8CD=2D=135°C=60° , 且ABCD , 求出垂尾模型ABCD的面积.(结果保留整数,参考数据:21.41431.732

              图1                                                            图2

  • 21. 我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点 A 处测得阿育王塔最高点 C 的仰角 CAE=45° ,再沿正对阿育王塔方向前进至 B 处测得最高点 C 的仰角 CBE=53°AB=10m ;小亮在点 G 处竖立标杆 FG ,小亮的所在位置点 D 、标杆顶 F 、最高点 C 在一条直线上, FG=1.5mGD=2m .

    (1)、求阿育王塔的高度 CE
    (2)、求小亮与阿育王塔之间的距离 ED .

    (注:结果精确到 0.01m ,参考数据: sin53°0.799cos53°0.602tan53°1.327

  • 22. 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.

    (1)、连结DE,求线段DE的长.
    (2)、求点A、B之间的距离.

    (结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36.sin40°≈0.64.cos40°≈0.77,tan40°≈0.84)

  • 23. 如图,斜坡 AB 的坡角 BAC=13° ,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点 A ,过其另一端 D 安装支架 DEDE 所在的直线垂直于水平线 AC ,垂足为点 FEDFAB 的交点.已知 AD=100cm ,前排光伏板的坡角 DAC=28° .

    参考数据: 21.4131.7362.45

    三角函数锐角 A

    13°

    28°

    32°

    sinA

    0.22

    0.47

    0.53

    cosA

    0.97

    0.88

    0.85

    tanA

    0.23

    0.53

    0.62

    (1)、求 AE 的长(结果取整数);
    (2)、冬至日正午,经过点 D 的太阳光线与 AC 所成的角 DGA=32° .后排光伏板的前端 HAB 上.此时,若要后排光伏板的采光不受前排光伏板的影响,则 EH 的最小值为多少(结果取整数)?
  • 24. 某海域有一小岛P,在以P为圆心,半径r为 10(3+3) 海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东 60° 的方向上,当海监船行驶 202 海里后到达B处,此时观测小岛P位于B处北偏东 45° 方向上.

    (1)、求A,P之间的距离AP;
    (2)、若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B处开始沿南偏东至多多少度的方向航行能安全通过这一海域?
  • 25. 如图,ABCDBE的顶点B重合,ABC=DBE=90°BAC=BDE=30°BC=3BE=2.

    (1)、特例发现:如图1,当点DE分别在ABBC上时,可以得出结论:ADCE= , 直线AD与直线CE的位置关系是
    (2)、探究证明:如图2,将图1中的DBE绕点B顺时针旋转,使点D恰好落在线段AC上,连接EC , (1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;
    (3)、拓展运用:如图3,将图1中的DBE绕点B顺时针旋转α(19°<α<60°) , 连接ADEC , 它们的延长线交于点F , 当DF=BE时,求tan(60°α)的值.