2022年秋季北师版数学九年级上册期末复习检测A

试卷更新日期:2022-11-05 类型:期末考试

一、单选题(每题3分,共30分)

  • 1. 某几何体如图所示,它的俯视图是(       )

    A、 B、 C、 D、
  • 2. 已知 ABCDEFABDE=12 ,若 BC=2 ,则 EF= (   )
    A、4 B、6 C、8 D、16
  • 3. 为了疫情防控,某小区需要从甲、乙、丙、丁 4名志愿者中随机抽取2名负责该小区入口处的测温工作,则甲被抽中的概率是(     )
    A、12 B、14 C、34 D、512
  • 4. 如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是(   )

    A、AB=AD B、AC⊥BD C、AC=BD D、∠DAC=∠BAC
  • 5. 如图,在函数 y=2x(x>0) 的图象上任取一点A,过点A作y轴的垂线交函数 y=8x(x<0) 的图象于点B,连接OA,OB,则 AOB 的面积是(   )

    A、3 B、5 C、6 D、10
  • 6. 一元二次方程x2+4x8=0的解是(       )
    A、x1=2+23x2=223 B、x1=2+22x2=222 C、x1=2+22x2=222 D、x1=2+23x2=223
  • 7. 已知△ABC与△A1B1C1是位似图形,位似比是1:3,则△ABC与△A1B1C1的面积比(  )
    A、1 :3 B、1:6 C、1:9 D、3:1
  • 8. 若关于x的一元二次方程x22mx+m24m1=0有两个实数根x1x2 , 且(x1+2)(x2+2)2x1x2=17 , 则m=( )
    A、2或6 B、2或8 C、2 D、6
  • 9. 如图,菱形ABCD中,AB=23 , ∠ABC=60°,矩形BEFG的边EF经过点C,且点G在边AD上,若BG=4,则BE的长为(  )

    A、32 B、332 C、6 D、3
  • 10. 如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1-k2=(   )

    A、3 B、-3 C、32 D、32

二、填空题(每题3分,共18分)

  • 11. 如图,反比例函数y=kx的图象经过矩形ABCD对角线的交点E和点A,点B、C在x轴上,OCE的面积为6,则k=

  • 12. 已知x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,且x2x1+x1x2=x12+2x2﹣1,则k的值为 .
  • 13. 如图,A是双曲线y=8x(x>0)上的一点,点C是OA的中点,过点C作y轴的垂线,垂足为D,交双曲线于点B,则△ABD的面积是

  • 14. 如图,菱形ABCD的对角线ACBD相交于点O,点E在OB上,连接AE , 点F为CD的中点,连接OF , 若AE=BEOE=3OA=4 , 则线段OF的长为

  • 15. 数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为米.

  • 16. 已知ABC是直角三角形,B=90°AB=3BC=5AE=25连接CECE为底作直角三角形CDECD=DEFAE边上的一点,连接BDBFBDFBD=45°AF长为

三、解答题(共8题,共72分)

  • 17. 如图,在菱形ABCD中,对角线ACBD相交于点O , 点EF在对角线BD上,且BE=DFOE=OA.

    求证:四边形AECF是正方形.

  • 18. 为扎实推进“五育并举”工作,某校利用课外活动时间开设了舞蹈、篮球、围棋和足球四个社团活动,每个学生只选择一项活动参加.为了解活动开展情况,学校随机抽取部分学生进行调查,将调查结果绘成如下表格和扇形统计图.

    参加四个社团活动人数统计表

    社团活动

    舞蹈

    篮球

    围棋

    足球

    人数

    50

    30

    80

    参加四个社团活动人数扇形统计图

    请根据以上信息,回答下列问题:

    (1)、抽取的学生共有人,其中参加围棋社的有人;
    (2)、若该校有3200人,估计全校参加篮球社的学生有多少人?
    (3)、某班有3男2女共5名学生参加足球社,现从中随机抽取2名学生参加学校足球队,请用树状图或列表法说明恰好抽到一男一女的概率.
  • 19. 如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC至点G,使CG=CE,连接DG、DE、FG.

    (1)、求证:△ABE≌△FCE;
    (2)、若AD=2AB,求证:四边形DEFG是矩形.
  • 20.

    如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1

    (1)、△A1B1C1与△ABC的位似比是

    (2)、画出△A1B1C1关于y轴对称的△A2B2C2

    (3)、设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标是

  • 21. 如图,已知一次函数y=ax+b与反比例函数y=mx(x<0)的图像交于A(﹣2,4),B(﹣4,2)两点,且与x轴和y轴分别交于点C、点D.

    (1)、根据图像直接写出不等式mx<ax+b的解集;
    (2)、求反比例函数与一次函数的解析式;
    (3)、点P在y轴上,且S△AOP12S△AOB , 请求出点P的坐标.
  • 22. 2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰嫩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价-进货价)

    类别

    价格

    A款钥匙扣

    B款钥匙扣

    进货价(元/件)

    30

    25

    销售价(元/件)

    45

    37

    (1)、网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;
    (2)、第一次购进的冰墩嫩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?
    (3)、冬奥会临近结束时,网店打算把B款钥匙扣调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?
  • 23. 如图,一次函数y=kx+b(k>0)的图像与反比例函数y=8x(x>0)的图像交于点A , 与x轴交于点B , 与y轴交于点CADx轴于点DCB=CD , 点C关于直线AD的对称点为点E

    (1)、点E是否在这个反比例函数的图象上?请说明理由;
    (2)、连接AEDE , 若四边形ACDE为正方形.

    ①求kb的值;

    ②若点Py轴上,当|PEPB|最大时,求点P的坐标.

  • 24. 综合与实践,【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD中,E是BC的中点, AEEP ,EP与正方形的外角 DCG 的平分线交于P点.试猜想AE与EP的数量关系,并加以证明;

    (1)、【思考尝试】同学们发现,取AB的中点F,连接EF可以解决这个问题.请在图1中补全图形,解答老师提出的问题.
    (2)、【实践探究】希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD中,E为BC边上一动点(点E,B不重合), AEP 是等腰直角三角形, AEP=90° ,连接CP,可以求出 DCP 的大小,请你思考并解答这个问题.
    (3)、【拓展迁移】突击小组深入研究希望小组提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E为BC边上一动点(点E,B不重合), AEP 是等腰直角三角形, AEP=90° ,连接DP.知道正方形的边长时,可以求出 ADP 周长的最小值.当 AB=4 时,请你求出 ADP 周长的最小值.