(北师大版)2022-2023学年度第一学期九年级数学 用频率估算概率 期中复习

试卷更新日期:2022-10-20 类型:复习试卷

一、单选题

  • 1. 在不透明的袋子中装有黑、白两种球共50个,这些球除颜色外都相同,随机从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则袋子中黑球的个数约为(    )
    A、20个 B、30个 C、40个 D、50个
  • 2. 在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是(  )
    A、15 B、12 C、9 D、4
  • 3. 一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,则估计红球的个数约为(  )
    A、35个 B、60个 C、70个 D、130个
  • 4. 一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球(    )个
    A、12 B、15 C、18 D、24
  • 5. 在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在25%左右,则m的值大约为(    )
    A、10 B、12 C、16 D、20
  • 6. 某小组做“用频率估计概率”的实验时,给出的某一结果出现的频率分布折线图,则符合这一结果的实验可能是(    )

    A、抛一枚硬币,出现正面朝上 B、掷一个正六面体的骰子,出现3点朝上 C、从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球 D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
  • 7. 在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球实验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球的个数可能是(    )
    A、2个 B、4个 C、18个 D、16个
  • 8. 在一个不透明的口袋中,装有除颜色外其他都相同的4个白球和 n 个黄球,某同学进行如下试验:从袋中随机摸出1个球记下它的颜色,放回、摇匀,为一次摸球试验.记录摸球的次数与摸出白球的次数的列表如下:

    摸球试验的次数

    100

    200

    500

    1000

    摸出白球的次数

    21

    39

    102

    199

    根据列表可以估计出n的值为(  )

    A、4 B、16 C、20 D、24
  • 9. 在大力发展现代化农业的形势下,现有 AB 两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:

    种子数量

    100

    300

    500

    1000

    3000

    A

    出芽率

    0.99

    0.94

    0.96

    0.98

    0.97

    B

    出芽率

    0.99

    0.95

    0.94

    0.97

    0.96

    下面有三个推断:

    ①当实验种子数量为100时,两种种子的出芽率均为0.99,所以 AB 两种新玉米种子出芽的概率一样;

    ②随着实验种子数量的增加, A 种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;

    ③在同样的地质环境下播种, A 种子的出芽率可能会高于 B 种子.其中合理的是(  )

    A、①②③ B、①② C、①③ D、②③
  • 10. 下列说法中,不正确的是(   )
    A、13人中必定有两个人是农历同月份出生的是必然事件 B、了解一批灯泡的使用寿命采用抽样调查 C、一组数据6,5,3,5,4的众数是5,中位数是3 D、通过大量重复实验,可以用频率来估计随机事件的概率

二、填空题

  • 11. 在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,实验数据如下表:

    摸球的次数n

    100

    150

    200

    500

    800

    1000

    摸到白球的次数m

    58

    96

    116

    295

    484

    601

    摸到白球的频率mn

    0.58

    0.64

    0.58

    0.59

    0.605

    0.601

    根据数据,估计袋中黑球有个.

  • 12. 一个不透明的布袋中,装有红、白两种只有颜色不同的小球,其中红色小球有8个,为估计袋中白色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色放回,再次搅匀…100次试验发现摸到红球20次,则估计白色小球的数目是个.
  • 13. 不透明的袋中有若干个红球,为估计袋中红球个数,小明在袋中放入10个白球(每个球除颜色外都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后将放回袋中,通过大量的重复摸球试验后发现,摸到白球的频率是25 , 则袋中红球约为个.
  • 14. 在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外都相同.搅匀后从中任意摸出一个球,记下颜色再把它放回盒子中.不断重复实验多次后,摸到黑球的频率逐渐稳定在0.2左右.则据此估计盒子中大约有白球个.
  • 15. 第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会.如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为m2

三、解答题

  • 16. 在一个不透明的袋中装有材质、大小完全相同的红球和黑球共100个,小明每次摇匀后随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球的个数.
  • 17. 一个口袋里有若干个白球,没有其他颜色的球,而且不许将球倒出来数,那么你该如何来估计出其中的白球数呢?试设计出两种不同的方案.

  • 18. 某彩民在上期的体彩中,一次买了100注,结果有一注中了二等奖,三注中了四等奖,该彩民高兴地说:“这期彩票的中奖率真高,竟高达4%”.请对这一事件做简单的评述.

  • 19. 通常,选择题有4个选择支,其中只有1个选择支是正确的.现有20道选择题,小明认为只要在每道题中任选1个选择支,其中必有5题的选择结果是正确的.你认为小明的推断正确吗?说说你的理由.

四、综合题

  • 20. 在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.

    实验种子数 (粒)

    1

    5

    50

    100

    200

    500

    1000

    2000

    3000

    发芽频数

    0

    4

    45

    92

    188

    476

    951

    1900

    2850

    (1)、估计该麦种的发芽概率.
    (2)、如果播种该种小麦每公顷所需麦苗数为4000000棵,种子发芽后的成秧率为80%,该麦种的千粒质量为50g.那么播种3公顷该种小麦,估计约需麦种多少千克(精确到1kg)?
  • 21. 在一个不透明的盒子里装着只有颜色不同的黑、白两种球共5个,小明做摸球实验,他将盒子里面的球搅匀后从中随机摸出一球记下颜色,再把它放回盒子,不断重复上述过程实验n次,下表是小明“摸到白球”的频数、频率统计表.

    摸球实验次数n

    10

    100

    150

    200

    500

    摸到白球的频数m

    2

    22

    31

    39

    101

    摸到白球的频率p

    0.200

    0.220

    0.207

    0.195

    0.202

    (1)、观察上表,可以推测,摸一次摸到白球的概率为.
    (2)、请你估计盒子里白球个数.
    (3)、若往盒子中同时放入x个白球和y个黑球,从盒子中随机取出一个白球的概率是0.25,求y与x之间的函数关系式.
  • 22. 只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数都表示为两个素数的和”.如20=3+17
    (1)、从7、11、13、17这4个素数中随机抽取一个,则抽到的数是7的概率是
    (2)、从7、11、13、17这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,用画树状图或列表的方法,求抽到的两个素数之和等于24的概率.
  • 23. 在一只不透明的袋子中装有黑球、白球共10个,这些球除颜色外都相同,小明每次摇匀后随机从袋中摸出一个球,记录颜色后放回袋中,通过2000次重复摸球实验后,共摸出黑球1205次.
    (1)、估计袋中有黑球个;
    (2)、小明从袋中取出n个黑球后,小明从袋中剩余的球中随机摸出一个球是黑球的概率为 13 ,求n的值.