湖北省九校教研协作体2022-2023学年高二上学期数学9月联考试卷
试卷更新日期:2022-10-14 类型:月考试卷
一、单选题
-
1. 已知实数集合{1,2,3,x}的最大元素等于该集合的所有元素之和,则x的值为( ).A、0 B、-2 C、-1 D、-32. 已知复数满足为虚数单位,则( )A、1 B、2 C、1-i D、2-i3. 已知正三棱锥侧面与底面所成二面角的余弦值为 , 则此三棱锥的高h与其内切球半径r之比是( )A、5 B、6 C、7 D、84. 在空间直角坐标系中,已知O(0, 0,0),A(1,0,0),B(0,1,0),C(0,0,1),则到面OAB、面OBC、面OAC、面ABC的距离相等的点的个数是( )A、1 B、4 C、5 D、无穷多5. 武钢六中近期迎来校庆,学生会制作了4种不同的精美卡片,在学校书店的所有书本中都随机装入一张卡片,规定:如果收集齐了4种不同的卡片,便可获得奖品.小明一次性购买书本6册,那么小明获奖的概率是( )A、 B、 C、 D、6. 袋子A中装有两张10元纸币和三张1元纸币,袋子B中装有四张5元纸币和三张1元纸币.现随机从两个袋子中各取出两张纸币.则A中剩下的纸币面值之和大于B中剩下的纸币面值之和的概率为( )A、 B、 C、 D、7. 设是椭圆上的两个动点,且为坐标原点).则的最大值和最小值的乘积为( )A、 B、 C、 D、8. 在三棱锥中,顶点P在底面的射影为的垂心O(O在内部),且PO中点为M,过AM作平行于BC的截面 , 过BM作平行于AC的截面 , 记 , 与底面ABC所成的锐二面角分别为 , , 若 , 则下列说法错误的是( )A、若 , 则 B、若 , 则 C、可能值为 D、当取值最大时,
二、多选题
-
9. 如图,在某城市中,M、N两地之间有整齐的方格形道路网,其中是道路网中位于一条对角线上的4个交汇处.今在道路网M、N处的甲、乙两人分别要到N、M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N、M处为止则下列说法正确的是( )A、甲从M到达N处的方法有20种 B、甲从M必须经过到达N处的方法有64种 C、甲、乙两人在处相遇的概率为 D、甲、乙两人相遇的概率为10. 在中,P,Q分别为边AC,BC上一点,BP,AQ交于点D,且满足 , , , , 则下列结论正确的为( )A、若且时,则 , B、若且时,则 , C、若时,则 D、11. 已知正三棱锥的底面的面积为 , 体积为3,球 , 分别是三棱锥的外接球与内切球,则下列说法正确的是( )A、球的表面积为 B、二面角的大小为 C、若点在棱上,则的最小值为 D、在三棱锥中放入一个球 , 使其与平面、平面、平面以及球均相切,则球的半径为12. 当时,恒成立,则( )A、当时, B、当时, C、当时, D、当时,
三、填空题
-
13. 已知等边 的边长为1, . 则 的面积为14. 已知z∈C.若关于x的方程(i为虚数单位)有实数根,则 的最小值为.15. 大国泱泱,大潮滂滂.喜迎祖国73华诞,现有10张卡片,每张卡片上写有“我”“爱”“你”“中”“国”中两个不同的字,且任意两张卡片上的字不完全相同.将这10张卡片放入标号为“我”“爱”“你”“中”“国”的五个盒子中,“我”“爱”“你”“中”“国”依次编号为 , 规定写有i,j的卡片只能放在i号或j号盒子中.一种放法称为"好的",如果1号盒子中的卡片数多于其他每个盒子中的卡片数.则"好的"放法共有种.16. 四个半径都为1的球放在水平桌面上,且相邻的球都相切(球心的连线构成正方形).有一个正方体,其下底与桌面重合,上底的四个顶点都分别与四个球刚好接触,则该正方体的棱长为.
四、解答题
-
17. 在中,分别表示它的三个内角,且满足 , 试判断该三角形的形状.18. 如图,圆与轴相切于点 , 与轴的正半轴相交于两点(在的上方),且.(1)、求圆的方程;(2)、设过点的直线与椭圆相交于两点,求证:射线平分.19. 一场突如其来的新型冠状病毒疫情扰乱了人们的正常生产生活.秉承防疫为民的政治理念,积极响应上级号召,我市将于人民路以东修建一大型核酸检查中心.其形状可大致认为是正方形ABCD,(1)、从3男2女共5名医生中,抽取2名医生参加核酸中心检测工作,则至少有1名女医生参加的概率为多少(2)、为保证人员合理分流,先于ABCD中取一点P,使得核酸中心划分为 . 试求最小正实数a使得任意两三角形面积比值不大于a且不小于 .20. 同底的两个正三棱锥内接于半径为的球,它们的侧面与底面所成的角分别为 ,求(1)、两三棱锥的侧面积之比(2)、两三棱锥体积之比(3)、之和的正切的最大值