浙江省湖州市长兴县部分校2022-2023学年九年级上学期返校联考数学试题

试卷更新日期:2022-09-30 类型:开学考试

一、选择题(本题有10小题,每小题3分,共30分)

  • 1. 下列二次根式中,可与2合并的是( )
    A、3 B、4 C、6 D、8
  • 2. 下列由箭头组成的图形中,不是中心对称图形的是( )
    A、 B、 C、 D、
  • 3. 把一元二次方程2(x+1)+(2x1)2=0化成一般形式,结果正确的是( )
    A、4x24x+1=0 B、4x22x+3=0 C、2x22x+3=0 D、4x2+3=0
  • 4. 若二次根式x2的值为3,则x的值是( )
    A、3 B、3 C、±3 D、9
  • 5. 小娅在对数据263030435*57进行统计分析时,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果不受影响的统计量是( )
    A、平均数 B、中位数 C、方差 D、众数
  • 6. 一个长方形牧场的面积为8100平方米,长比宽多19米,设宽为x米,由题意可列出的方程是( )

    A、(x+19)x=8100 B、(x19)x=8100 C、(2x19)x=8100 D、(2x+19)x=8100
  • 7. 已知反比例函数y=kx的图象经过点P , 且当x>0时,yx的增大而增大,则点P的坐标可以是( )
    A、(22) B、(13) C、(53) D、(51)
  • 8. 将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分展开铺平后的图形是(   )

    A、等腰三角形 B、直角三角形 C、矩形 D、菱形
  • 9. 如图,在平面直角坐标系xOy中,MNx轴正半轴上两个点,且ON=3OM , 过点Mx轴的垂线,分别与反比例函数y=3xy=2x的图象交于AB两点,过点Nx轴的垂线,分别与反比例函数y=3xy=2x的图象交于CD两点,则四边形ABCD的面积是( )

    A、203 B、10 C、152 D、随点M位置的变化而变化
  • 10. 如图,以菱形ABCD的边AD为对角线,作正方形AEDF , 点E恰好落在CB的延长线上,则BAE的度数是( )

    A、10 B、15 C、20 D、25

二、填空题(本题有6小题,每小题4分,共24分)

  • 11. 已知一组数据的方差为4,这组数据的标准差是.
  • 12. 用配方法解方程x2+4x3=0 , 配方得(x+m)2=7 , 常数m的值是.
  • 13. 如果一个八边形的每一个内角都相等,那么它的一个内角的度数为.
  • 14. 如果一个三角形的三边长分别为abc , 记p=a+b+c2 , 那么这个三角形的面积S=p(pa)(pb)(pc) , 这就是著名的海伦一秦九韶公式.若一个三角形的三边长分别为456 , 则这个三角形的面积为.
  • 15. 如图,在ABCD中,对角线ACBD交于点O , 若BDAB , 且AC=10AB=4 , 则BD的长是.

  • 16. 如图,四边形OABC为矩形,点A在第三象限,点A关于OB的对称点为点D , 点BD都在函数y=32x(x<0)的图象上,BEy轴于点E.若DC的延长线交y轴于点F , 当矩形OABC的面积为6时,OFOE的值为.

三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)

  • 17. 计算:(123)÷3.
  • 18. 已知关于x的方程2x2+2kx+k1=0
    (1)、求证:无论k为何值,方程总有两个不相等实数根;
    (2)、若x=1是该方程的一个根,求方程的另一个根.
  • 19. 已知ABC中,AB=1BC=22AC=5.

    (1)、在4×4的网格中画出ABC , 使它的顶点都在方格的顶点上(每个小方格的边长为1)
    (2)、在(1)中的网格里找一点D(在方格的顶点上),使得ABC的面积与BCD的面积相等.
  • 20. 如图,在ABCD中,EF分别为ABCD边上的中点,AC是对角线.

    (1)、求证:AF//CE
    (2)、若ACBCAB=4 , 求四边形AECF的周长.
  • 21. 某中学组织七、人年级全体学生开展了“禁毒知识”网上竞赛活动,为了解竞赛情况,从七、八年级中各随机抽取了10名同学的成绩(满分为100分).

    收集数据:

    七年级

    90

    95

    95

    80

    90

    80

    85

    100

    85

    100

    八年级

    85

    85

    95

    80

    95

    90

    90

    90

    100

    90

    整理数据:

     

    80

    85

    90

    95

    100

    七年级

    2

    2

    2

    2

    2

    八年级

    1

    2

    4

    2

    1

    分析数据:

    年级

    平均数

    中位数

    众数

    方差

    七年级

    90

    ____

    90

    50

    八年级

    ____

    90

    90

    30

    根据以上信息回答下列问题:

    (1)、请完成表格中的空格.
    (2)、通过数据分析,你认为哪个年级学生的成绩比较好?请说明理由.
    (3)、若该校七、人年级共有1600人,本次竞赛成绩不低于95分的为“优秀”,试估计这两个年级共有多少名学生达到“优秀”.
  • 22. 某商店经市场调查发现:某种商品的周销售量y(件)与售价x(元/件)的关系为y=2x+200 , 其售价与周销售利润w(元)的三组对应值如下表:

    售价x(元/件)

    50

    55

    70

    周销售利润w(元)

    1000

    1350

    1800

    注:周销售利润=周销售量×(售价一进价)

    (1)、求该商品的进价;
    (2)、求当该商品的售价是多少元/件时,周销售利润为1600元?
  • 23. 在平面直角坐标系xOy中,已知点A(333) , 点B(60).

    (1)、若将OAB沿x轴向右平移m个单位,此时点A恰好落在反比例函数y=63x的图象上,求m的值;
    (2)、若OAB绕点O按逆时针方向旋转α(0<α<180).

    ①当α=30时,点B恰好落在反比例函数y=kx图象上,求k的值;

    ②问点AB能否同时落在(1)中的反比例函数的图象上?若能,直接写出α的值;若不能,请说明理由.

  • 24. 如图,在矩形ABCD中,AB=8BC=4O是对角线BD中点.过O点的直线与矩形的一组对边ABCD分别相交于点F和点E.B'B关于直线EF对称,连结BEDB'EB'OB'.

    (1)、求证:OE=OF
    (2)、判断DB'OE的位置关系,并说明理由;
    (3)、若四边形OEB'D是平行四边形,求线段EF长.