上海市普陀区2021-2022学年七年级上学期期末数学试题

试卷更新日期:2022-09-29 类型:期末考试

一、单选题

  • 1. 下列计算结果中,正确的是(  )
    A、a3+a3=a6 B、(2a)3=6a3 C、(a﹣7)2=a2﹣49 D、a7÷a6=a
  • 2. 下列说法中正确的是(  )
    A、a+b3a是整式 B、多项式2x2﹣y2+xy﹣4x3y3按字母x升幂排列为﹣4x3y3+2x2+xy﹣y2 C、2x是一次单项式 D、a3b+2a2b﹣3ab的二次项系数是3
  • 3. 下列各式从左到右的变形是因式分解的是(  )
    A、1+2x+3x2=1+x(2+3x) B、3x(x+y)=3x2+3xy C、6a2b+3ab2﹣ab=ab(6a+3b﹣1) D、12a3x5=4ax2﹣3a2x3
  • 4. 当x=3时,下列各式值为0的是(  )
    A、43x B、x29x+3 C、x+3x3 D、x3x29
  • 5. 由圆和正五边形所组成的图形如图所示,那么这个图形(  )

    A、是轴对称图形但不是中心对称图形 B、是中心对称图形但不是轴对称图形 C、既是中心对称图形又是轴对称图形 D、既不是中心对称图形也不是轴对称图形
  • 6. 如果2(5﹣a)(6+a)=100,那么a2+a+1的值为(  )
    A、19 B、﹣19 C、69 D、﹣69

二、填空题

  • 7. 用代数式表示“x的2倍与y的差”为
  • 8. 计算:(-a2)•a3=
  • 9. 计算:(x+3)(x+5)=
  • 10. 计算:(9a6﹣12a3)÷3a3
  • 11. 因式分解:ax﹣by+ay﹣bx=
  • 12. 因式分解:2a2﹣8=
  • 13. 新型冠状病毒颗粒呈球形或者椭圆形,传染性非常强,传播速度非常快,它的直径约为125纳米(0.000000125米)左右,将0.000000125用科学记数法表示为 
  • 14. (13)2=
  • 15. 计算:a2+2a3+23a
  • 16. 已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为 
  • 17. 如图,正方形ABCD的边AB在数轴上,数轴上点B表示的数为1,正方形ABCD的面积为a2(a>1).将正方形ABCD在数轴上向右水平移动,移动后的正方形记为A′B′C′D′,点A、B、C、D的对应点分别为A′、B′、C′、D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分图形的面积记为S.当S=a时,数轴上点B′表示的数是 (用含a的代数式表示).

  • 18. 如图,在△ABC中,∠ACB=50°,将△ABC绕点C逆时针旋转得到△DEC(点D、E分别与点A、B对应),如果∠ACD与∠ACE的度数之比为3:2,当旋转角大于0°且小于180°时,旋转角的度数为 

三、解答题

  • 19. 计算:(ab)2(2ab)(2a+b)
  • 20. 计算:(2xyx+y)12(xy)x2÷x2y2xy
  • 21. 因式分解:(x2+4x)2﹣(x2+4x)﹣20.
  • 22. 因式分解:1﹣a2﹣4b2+4ab.
  • 23. 已知3m=4,3n=5,分别求3m+n与32m﹣n的值.
  • 24. 解方程:1+11x2=xx+1
  • 25. 如图,已知四边形ABCD和直线MN.

    (1)、画出四边形A1B1C1D1 , 使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;
    (2)、画出四边形A2B2C2D2 , 使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;
    (3)、四边形A1B1C1D1与四边形A2B2C2D2的位置关系是 
  • 26. 2022年北京冬奥会开幕在即,参加女子1500米短道速滑的运动员在教练员的指导下努力训练提高竞技水平.在经过指导后,甲运动员的速度是原来的1.1倍,时间缩短了15秒,那么经过指导后,甲运动员的速度是多少?
  • 27. 先化简,再求值:x2+6x+9x2+x6÷(5x2﹣x﹣2),其中x=﹣2.
  • 28. 如图1,长方形纸片ABCD(AD>AB),点O位于边BC上,点E位于边AD上,将纸片沿OE折叠,点C、D的对应点分别为点C′、D′.

    (1)、当点C′与点A重合时,如图2,如果AD=12,CD=8,联结CE,那么△CDE的周长是
    (2)、如果点F位于边AB上,将纸片沿OF折叠,点B的对应点为点B′.

    ①当点B′恰好落在线段OC′上时,如图3,那么∠EOF的度数为  ▲  ;(直接填写答案)

    ②当∠B′OC′=20°时,作出图形,并写出∠EOF的度数.