浙江省历年(2018-2022年)真题分类汇编专题47 解直角三角形(2)

试卷更新日期:2022-08-14 类型:二轮复习

一、单选题

  • 1. 如图,正三角形ABC的边长为3, 将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是( )

    A、2 3 B、343 C、323 D、3
  • 2. 已知二次函数y=x²,当a≤x≤b时m≤y≤n,则下列说法正确的是( )
    A、当n-m=1时,b-a有最小值 B、当n-m=1时,b-a有最大值 C、当b-a=1时,n-m无最小值 D、当b-a=1时,n-m有最大值
  • 3. 如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为(   )

    A、(36 63 )cm2 B、(36 123 )cm2 C、24cm2 D、36cm2
  • 4. 图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形 OABC .若 AB=BC=1 . AOB=α ,则 OC2 的值为(   )

    A、1sin2α+1 B、sin2α+1 C、1cos2α+1 D、cos2α+1
  • 5. 如图是一架人字梯,已知 AB=AC=2 米,AC与地面BC的夹角为 α ,则两梯脚之间的距离BC为(   )

    A、4cosα B、4sinα C、4tanα D、4cosα
  • 6. 如图,已知在矩形ABCD中,AB=1,BC= 3 ,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1 , 当点P运动时,点C1页随之运动。若点P从点A运动到点D,则线段CC1扫过的区域面积是

    A、π B、π+334 C、332 D、2π
  • 7. 如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为( )

    A、cosθ(1+cosθ) B、cosθ(1+sinθ) C、sinθ(1+sinθ) D、sinθ(1+cosθ)

二、填空题

  • 8. 如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β,则tanβ的值是.

  • 9. 图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且 OA=OB ,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得 FA=54cmEB=45cmAB=48cm .

    (1)、椅面CE的长度为cm.
    (2)、如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角 CHD 的度数达到最小值 30° 时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据: sin15°0.26cos15°0.97tan15°0.27
  • 10. 图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若 AB=30cm ,则BC长为cm(结果保留根号).

  • 11. 由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分)。则图中AB的长应该是

  • 12. 已知 ABCABD 在同一平面内,点C,D不重合, ABC=ABD=30°AB=4AC=AD=22 ,则CD长为.
  • 13. 如图是某风车示意图,其相同的四个叶片均匀分布,水平地而上的点M在旋转中心O的正下方。某一时刻,太阳光线恰好垂直照射叶片 OA、OB ,此时各叶片影子在点M右侧成线段 CD ,测得MC=8.5m,CD=13m,垂直于地面的木棒 EF 与影子 FG 的比为2∶3,则点O,M之间的距离等于米.转动时,叶片外端离地面的最大高度等于米.

  • 14. 图1是光伏发电场景,其示意图如图2,EF为吸热塔,在地平线EG上的点B,B'处各安装定日镜(介绍见图3).绕各中心点(A,A')旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处.已知AB=A'B'=1m,EB=8m,EB'=8 3 m,在点A观测点F的仰角为45°

    (1)、点F的高度EF为m.
    (2)、设∠DAB=α,∠D'A'B'=β,则α与β的数量关系是.

三、解答题

  • 15. 图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地面l,活动杆CD固定在支撑杆上的点E处.若∠AED=48°,BE=110cm,DE=80cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)

  • 16. 如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°  ,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到 0.1m;参考数据:sin75°≈0.97, cos75°≈0.26,tan75°≈3.73)

     

  • 17. 如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sinA的值.

四、综合题

  • 18. 为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向。测量方案与数据如下表:

    课题

    测量河流宽度

    测量工具

    测量角度的仪器,皮尺等

    测量小组

    第一小组

    第二小组

    第三小组

    测量方案示意图

    说明

    点B,C在点A的正东方向

    点B,D在点A的正东方向

    点B在点A的正东方向,点C在点A的正西方向

    测量数据

    BC=60m,

    ∠ABH=70°,

    ∠ACH=35°

    BD=20m,

    ∠ABH=70°,

    ∠BCD=35°

    BC=101m,

    ∠ABH=70°,

    ∠ACH=35°

    (参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)

    (1)、哪个小组的数据无法计算出河宽?
    (2)、请选择其中一个方案及其数据求出河宽(精确到0.1m)。
  • 19. 图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm, ABC=47° .

    (1)、求车位锁的底盒长BC.
    (2)、若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?

    (参考数据: sin47°0.73cos47°0.68tan47°1.07 )

  • 20. 如图,在△ABC中,AB= 42 ,∠B=45°,∠C=60°.

    (1)、求BC边上的高线长.
    (2)、点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.

    ①如图2,当点P落在BC上时,求∠AEP的度数.

    ②如图3,连结AP,当PF⊥AC时,求AP的长.

  • 21. 如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E。已知∠ABC=60°,∠C=45°。

    (1)、求证:AB=BD;
    (2)、若AE=3,求△ABC的面积。
  • 22. 如图,在 ABCD 中, EF 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB=CFD=90° .

    (1)、求证:四边形 AECF 是平行四边形.
    (2)、当 AB=5tanABE=34CBE=EAF 时,求 BD 的长.
  • 23. 拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内,

    (1)、转动连杆BC,手臂CD,使 ABC=143°CD//l ,如图2,求手臂端点D离操作台 l 的高度DE的长(精确到1cm,参考数据: sin53°0.8cos53°0.6 ).
    (2)、物品在操作台 l 上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.
  • 24. 我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄 AP 始终平分同一平面内两条伞骨所成的角 BAC ,且 AB=AC ,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点 D' 的位置,且A,B, D' 三点共线, AD'=40cm ,B为 AD' 中点,当 BAC=140° 时,伞完全张开.

    (1)、求 AB 的长.
    (2)、当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据: sin70°094cos70°0.34tan70°2.75
  • 25. 已知:如图,矩形 ABCD 的对角线 ACBD 相交于点O, BOC=120°AB=2 .

    (1)、求矩形对角线的长.
    (2)、过O作 OEAD 于点E,连结BE.记 ABE=α ,求 tanα 的值.
  • 26. 一酒精消毒瓶如图1,AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BEEF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=6cmBE=4cm . 当按压柄△BCD按压到底时,BD转动到BD′,此时BD′∥EF(如图3).

    (参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

    (1)、求点D转动到点D′的路径长;
    (2)、求点D到直线EF的距离(结果精确到0.1cm).
  • 27. 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.

    (1)、连结DE,求线段DE的长.
    (2)、求点A,B之间的距离.

    (结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

  • 28. 每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.

    (参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)

    (1)、若∠ABD=53°,求此时云梯AB的长.
    (2)、如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.
  • 29. 如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.

    (1)、求证:CE=CM.
    (2)、若AB=4,求线段FC的长.
  • 30. 如图,在△ABC 中,  AD⊥BC于点D、E、F分别是AC、AB 的中点,O是 DF 的中点, EO 的延长线交线段 BD 于点G,连结  DE、EF、FG.

    (1)、求证:四边形 DEFG 是平行四边形.
    (2)、当AD=5,tan∠EDC=52=时,求 FG 的长.
  • 31. 圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表 AC垂直圭BC,已知该市冬至正午太阳高度角(即∠ABC)为37° ,夏至正午太阳高度角(即∠ADC)为84°,圭面上冬至线与夏至线之间的距离(即DB的长)为4米.

    (1)、求∠BAD的度数.
    (2)、求表AC的长(最后结果精确到0.1米).

    (参考数据:sin37°≈ 35 ,cos37°≈ 45 ,tan37°≈ 34 ,tan84°≈ 192

  • 32. 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.

    (1)、连结DE,求线段DE的长.
    (2)、求点A、B之间的距离.

    (结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36.sin40°≈0.64.cos40°≈0.77,tan40°≈0.84)

  • 33. 在平面直角坐标系中,点A的坐标为 (730) ,点B在直线 ly=38x 上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.

    (1)、如图,点B,C分别在第三、二象限内,BC与AO相交于点D.

    ①若 BA=BO ,求证: CD=CO .

    ②若 CBO=45° ,求四边形 ABOC 的面积.

    (2)、是否存在点B,使得以 ABC 为顶点的三角形与 BCO 相似?若存在,求OB的长;若不存在,请说明理由.
  • 34. 小东在做九上课本123页习题:“1: 2 也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1: 2 .”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.

    (1)、你赞同他的作法吗?请说明理由.
    (2)、小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.

    ①如图3,当点D运动到点A时,求∠CPE的度数.

    ②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.

  • 35. 如图1, AB 为半圆O的直径,C为 BA 延长线上一点, CD 切半圆于点D, BE⊥CD ,交 CD 延长线于点E,交半圆于点F,已知BC=5,BE=3.点P,Q分别在线段  AB、BE上(不与端点重合),且满足 APBQ=54 .设BQ=x,CP=y.

    (1)、求半圆O的半径.
    (2)、求y关于x的函数表达式.
    (3)、如图2,过点P作 PR⊥CE 于点R,连结  PQ、RQ.

    ①当 △PQR 为直角三角形时,求x的值.

    ②作点F关于 QR 的对称点 F' ,当点 F'落在 BC上时,求 CF'BF' 的值.