浙江省历年(2018-2022年)真题分类汇编专题30 三角形的中位线定理

试卷更新日期:2022-08-14 类型:二轮复习

一、单选题

  • 1. 如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为( )

    A、22 B、3 C、23 D、4
  • 2. 如图,在△ABC中,D,E,F分别是BC,AC,AB的中点.若AB=6,BC=8,则四边形BDEF的周长是(    )

    A、28 B、14 C、10 D、7
  • 3. 如图,在 ABC 中, AB=4AC=5BC=6 ,点D,E,F分别是AB,BC,CA的中点,连结DE,EF,则四边形ADEF的周长为(   )

    A、6 B、9 C、12 D、15
  • 4. 如图,在 ABC 中, B=45°C=60°ADBC 于点D, BD=3 .若E,F分别为 ABBC 的中点,则 EF 的长为(   )

    A、33 B、32 C、1 D、62
  • 5. 如图是一个由5张纸片拼成的 ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为 S1 ,另两张直角三角形纸片的面积都为 S2 ,中间一张矩形纸片 EFGH 的面积为 S3FHGE 相交于点O.当 AEOBFOCGODHO 的面积相等时,下列结论一定成立的是(   )

    A、S1=S2 B、S1=S3 C、AB=AD D、EH=GH
  • 6. 如图,已知在△ABC中,∠ABC<90°,AB≠BC,BE是AC边上的中线。按下列步骤作图:

    ①分别以点B,C为圆心,大于线段BC长度一半的长为半径作弧,相交于点M,N;②过点M,N作直线MN,分别交BC,BE于点D,O;③连结CO,DE。则下列结论错误的是(    )

    A、OB=OC B、∠BOD=∠COD C、DE∥AB D、DB=DE
  • 7. 如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为(   )

    A、2 B、2.5 C、3 D、4
  • 8. 如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是(   )

    A、AE=EF B、AB=2DE C、△ADF和△ADE的面积相等 D、△ADE和△FDE的面积相等
  • 9.

    一张矩形纸片 ABCD ,已知 AB=3AD=2 ,小明按所给图步骤折叠纸片,则线段 DG 长为(   )

    A、2 B、22 C、1 D、2
  • 10. 如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A',B',A'E与BC相交于点G,B'A'的延长线过点C,若 BFGC=23 ,则 ADAB 的值为(   )

    A、22 B、4105 C、207 D、83
  • 11. 由四个全等的直角三角形和一个小正方形组成的大正方形 ABCD 如图所示.过点 DDF 的垂线交小正方形对角线 EF 的延长线于点 G ,连结 CG ,延长 BECG 于点 H .若 AE=2BE ,则 CGBH 的值为(   )

    A、32 B、2 C、3107 D、355
  • 12. 如图,在△ABC中,∠BAC=90°,ABAC=5,点DAC上,且AD=2,点EAB上的动点,连结DE , 点FG分别是BCDE的中点,连结AGFG , 当AGFG时,线段DE长为( )

    A、13 B、522 C、412 D、4

二、填空题

  • 13. 如图,在 △ABC中, ∠ACB=90° , D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为

  • 14. 如图,在平面直角坐标系xOy中,点 A (0,4), B(3,4),将△ABO向右平移到 △CDE 位置, A 的对应点是 C, O的对应点是 E,函数 y=kx(k0) 的图象经过点 C 和DE的中点 F,则k的值是

三、综合题

  • 15. 如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6。连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点。

    (1)、求证:∠CAD=∠CBA。
    (2)、求OE的长。