(鲁教版)2022-2023学年度第一学期六年级数学2.6 有理数的加减混合运算 同步测试

试卷更新日期:2022-08-08 类型:同步测试

一、单选题

  • 1. 要使算式(1)3的运算结果最大,则“□”内应填入的运算符号为(   )
    A、+ B、- C、× D、÷
  • 2. 算式922+1118(2322718)之值为何?(   )
    A、411 B、910 C、19 D、54
  • 3. 某市冬季中的一天,中午12时的气温是3 , 经过6小时气温下降了7 , 那么当天18时的气温是(       )
    A、10 B、10 C、4 D、4
  • 4. 徐志摩的《泰山日出》一文描写了“泰山佛光”壮丽景象.若1月份的泰山山脚平均气温为9℃,山顶平均气温为-2℃,则山脚平均气温与山顶平均气温的温差是(   )
    A、11℃ B、-11℃ C、7℃ D、-7℃
  • 5. 一天早晨的气温为-3℃,中午上升了7℃,半夜又下降了8℃,则半夜的气温是( )
    A、-5℃ B、-4℃ C、4℃ D、-16℃
  • 6. 在﹣2□3的“□”中填入一个运算符号使运算结果最小(   )
    A、 B、 C、× D、÷
  • 7. 某日的最高气温为32℃,最低气温为24℃,则这天的最高气温比最低气温高(       )
    A、8 B、6 C、8℃ D、10℃
  • 8. 下面算式与51213+214的值相等的是(       )
    A、312(213)+(414) B、12(313)+314 C、212+(213)+714 D、412(13)+314
  • 9. 小云计划户外徒步锻炼,每天有“低强度”“高强度”“休息”三种方案,下表对应了每天不同方案的徒步距离(单位:km).若选择“高强度”要求前一天必须“休息”(第一天可选择“高强度”).则小云5天户外徒步锻炼的最远距离为( )km.

    日期

    第1天

    第2天

    第3天

    第4天

    第5天

    低强度

    8

    6

    6

    5

    4

    高强度

    12

    13

    15

    12

    8

    休息

    0

    0

    0

    0

    0

    A、35 B、36 C、37 D、38
  • 10. 计算 2+(3) 的结果等于()
    A、6 B、1 C、1 D、6

二、填空题

  • 11. 小韦同学周末的红色之旅,坐爸爸的车去百色起义纪念馆,从家里行驶7千米后,进入高速公路,在高速公路上保持匀速行驶,小韦记录高速公路上行驶的时间(和路程)数据如下表,按照这个速度行驶了2小时进入高速路出口匝道,再行驶5千米抵达纪念馆,则小韦家到纪念馆的路程是千米.

    t小时

    0.2

    0.6

    0.8

    s千米

    20

    60

    80

  • 12. 远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示是一位母亲记录孩子出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是天.

  • 13. 甲、乙两施工队分别从两端修一段长度为315米的公路.在施工过程中,甲队曾因技术改进而停工一天,之后加快了施工进度并与乙队共同按期完成任务.下表根据每天工程进度制作而成的.

    施工时间/天

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    累计完成施工量/米

    25

    50

    75

    100

    115

    155

    195

    235

    275

    315

    甲队技术改进后比技术改进前每天多修路米.

  • 14. 若关于x的多项式 (17x23x+4)(ax2+bx+c) 除以 5x ,所得商恰好为 2x+1 ,则 a+b+c= .
  • 15. 《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十……”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米……”问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得粝米为 升.

三、解答题

  • 16. 在1到100这100个数中,任找10个不同的数,使其倒数之和等于1.现已有2个数,为2和6,再写出另外的8个数即可.


  • 17. 在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8 ℃,已知山脚的温度是24 ℃,山顶的温度是4 ℃,试求这座山的高度.
  • 18. 某检修队从A地出发,在东西方向的公路上检修线路.如果规定向东行驶为正,向西行驶为负,这个检修队一天中的行程记录如下(单位:km):-4,+7,-9,+8,+6,-5,-3.若检修队所乘汽车每千米耗油0.3L,问:检修队收工地在何处?从出发到收工共耗油多少升?
  • 19. 某冷冻厂的一个冷库的室温是 4 ℃,现有一批食品需要在 32 ℃冷藏,如果每小时能降温 7 ℃,几小时后能降到所要求的温度?
  • 20. 请先阅读下列一组内容,然后解答问题:

    因为: 11×2=11212×3=121313×4=131419×10=19110

    所以: 11×2+12×3+13×4++19×10

    =1110=910

    问题:

    计算:① 11×2+12×3+13×4++12004×2005

    11×3+13×5+15×7++149×51

  • 21. 一个食品加工厂从生产的某标准质量为 200g 的袋装面包中抽取样品10袋,检测每袋的质量是否符合标准,超过或不足的部分用正数或负数来表示,记录如下表:

    与标准质量的差/g

    5

    2

    0

    1

    3

    袋数/袋

    1

    2

    4

    2

    1

    求抽取检测的这批样品的总质量.

  • 22. 某村有6块小麦试验田,每块试验田今年的收成与去年相比的情况如下:(增产为正。减产为负。单位:kg)

    55,-40,10,-16,27,-5

    今年的小麦总产量相比去年情况如何?

  • 23. 燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m外的安全区域,已知导火线的燃烧速度为0.02m/s,人离开的速度为4m/s,那么导火线的长度至少应为多少米?
  • 24. 哈市某电子公司去年1~3月平均每月亏损2.5万元,4~7月平均每月盈利1.6万元,8~10月平均每月盈利2.1万元,11~12月平均每月亏损1.2万元.这个公司去年总的盈亏情况如何?