四川省成都市天府新区2021-2022学年七年级下学期期末数学试卷
试卷更新日期:2022-08-04 类型:期末考试
一、A卷选择题(本大题共8个小题,每小题4分,共32分)
-
1. 下列计算正确的是( )A、x3÷x2=x B、x3•x2=x6 C、x3+x2=x5 D、(x3)2=x92. 围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑、白棋子摆成的图案中,构成轴对称图形的是( )A、 B、 C、 D、3. 随着北斗系统全球组网的步伐,北斗芯片的研发生产技术也在逐步成熟,国产北斗芯片可支持接收多系统的导航信号,应用于自动驾驶、无人机、机器人等高精度定位需求领域,将为中国北斗导航产业发展提供有力支持,目前,该芯片工艺已达22纳米(即0.00000022米),则数据0.000000022用科学记数法表示为( )A、0.22×10﹣7 B、2.2×10﹣8 C、2.2×10﹣9 D、22×10﹣84. 下列事件中,是随机事件的是( )A、从一个只装有红球的盒子里摸出一个球是红球 B、早上的太阳从西方升起 C、从一副扑克牌中任意抽取一张,抽到的不是大王 D、抛出的篮球会下落5. 如图,将一直角三角尺与两边平行的纸条按如图所示放置,其中说法不正确的是( )A、∠1=∠2 B、∠3=∠4 C、∠1=∠4 D、∠4+∠5=180°6. 如图,△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是( )A、BC=DE B、∠ABC=∠D C、∠A=∠DEF D、AE=DB7. 如图,已知∠ACB=90°,CD⊥AB于点D,则下面说法中错误的是( )A、∠ACD=∠B B、∠BCD=∠A C、图中共有3个直角三角形 D、若AC=2,BC=3,则AB•CD=128. 向一个容器内以固定的速度注入水,液面升高的高度h与注水时间t的图像大致如图所示,则符合图象条件的容器为( )A、 B、 C、 D、
二、A卷填空题(本大题共5个小题,每小题4分,共20分)
-
9. 若∠A=25°,则∠A的余角为度.10. 若am=2,an=5,则am+n等于 .
11. 三角板是我们学习数学的好帮手,将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,则∠CBD的度数为 .12. 一个底面是正方形的长方体,高为4cm,底面正方形边长为3cm.如果它的高不变,把底面正方形边长增加了xcm,则所得长方体增加的体积V(cm3)与x(cm)之间的关系式是 .13. 已知,如图,∠AOB中,在OA和OB边上分别截取OM,ON,使OM=ON,分别以M,N为圆心,以大于 MN的长为半径作弧,两弧在∠AOB内交于点E,作射线OE,点P,D分别是射线OE,OB上一点,过点P作PC⊥OA,垂足为点C,连接PD,若PC=3,OD=4,则△POD的面积是 .三、A卷解答题(本大题共5个小题,共48分)
-
14.(1)、计算:(﹣2)3﹣(2022﹣π)0+( )﹣2﹣|﹣5|;(2)、先化简,再求值:[(x+y)2﹣(3x﹣y)(3x+y)﹣2y2]÷(﹣2x),其中x=﹣1,y=﹣2.15. 如图,在边长为1个单位长度的小正方形组成的6×8的网格中,给出了格点(顶点为网格线的交点)△ABC,l是过网格线的一条直线.
⑴求△ABC的面积;
⑵作△ABC关于直线l对称的图形△A′B′C′;
⑶在边BC上找一点D,连接AD,使得∠BAD=∠ABD.(保留作图痕迹)
16. 已知:如图,AD∥CB,AD=CB,试判断AB与CD的关系,并说明理由.17. “五一”小长假期间,小天和父母一起开车到距家220千米的景点旅游,出发前,汽车油箱内储油45升,当行驶了180千米时,发现油箱余油量为27升(假设行驶过程中汽车的耗油量是均匀的).(1)、求该车平均每千米的耗油量;(2)、写出油箱余油量Q(升)与行驶路程x(千米)的关系式;(3)、当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前沿原路返回到家?请说明理由.18. 如图,△ABC中,∠BAC=90°,AB=AC,D是边AB上一点,连接CD,过点A作AE∥BC交CD的延长线于点E,过点B作BF⊥CE于F,延长BF交AE于点G,连接GD.(1)、若AE=AC,求∠ACE的度数;(2)、若∠GDF=∠BDF,BC=4,求EG的长;(3)、判断CD,BG,GD之间的关系,并说明理由.四、B卷填空题(本大题共5个小题,每小题4分,共20分)
-
19. 已知2x÷2y=8,则x﹣y+1= .20. 小颖有两根长度为4cm和9cm的木棒,她想钉一个三角形的木框.现在有5根木棒供她选择,其长度分别为3cm,5cm,10cm,12cm,17cm.小颖随手拿了一根,恰好能够组成一个三角形的概率为 .21. 某学习小组在“设计自己的运算程序”这一综合与实践课题的研究中发现,任意写下一个三位数(三位数字相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差.重复这个过程,就能得到一个固定的数字,他们称它为“数字黑洞”.这个固定的数字是 .22. 如图,在锐角△ABC中,∠ABC=30°,AC=3,△ABC的面积为8,P为△ABC内部一点,分别作点P关于AB,BC,AC的对称点P1 , P2 , P3 , 连接P1P2 , PP3 , 则2P1P2+PP3的最小值为 .23. 如图,在△ABC中,AB=AC,E为线段BC延长线上一点,在AE的右侧作△AEF,使得AE=AF,∠EAF=∠BAC,连接FC并延长交AB的延长线于点D,若∠D=45°,则当△ABE是等腰三角形时,∠AEB的度数为 .
五、B卷解答题(本大题共3个小题,共30分)
-
24. 有八张完全相同的直角三角形纸片,如图1所示,其边长分别为a,b,c,且a<b<c.现将其中四张纸片拼得如图2所示的正方形A1B1C1D1和正方形A2B2C2D2 .(1)、正方形A1B1C1D1的边长为 .(2)、请你用两种不同的方法表示正方形A2B2C2D2面积,并写出a2 , b2 , c2之间的数量关系.(3)、若将剩余的四张纸片按图3的方式拼在图2外围,可得正方形A3B3C3D3 . 若正方形A1B1C1D1的面积为49,正方形A3B3C3D3的面积为289,求正方形A2B2C2D2的面积.25. 如图1,将南北向的天府大道与东西向的海洋路看成两条相互垂直的直线,十字路口记作点A.小明从海洋路上的点B出发,骑车向西匀速直行;与此同时,小颖从点A出发,沿天府大道步行向北匀速直行,小明到达A点处遇到红灯,等待1分钟后,他提速25%继续骑行.设出发x分钟时,小明、小颖两人与点A的距离分别为y1米和y2米.已知y1 , y2与x之间的图象如图2所示.(1)、小明提速后骑车的速度为米/分,小颖步行的速度为米/分;(2)、当6≤x≤10时,分别写出y1 , y2与x的关系式;(3)、出发多少分钟后,小明、小颖离A点的距离相等?26. 如图,在△ABC中,∠ACB=90°,AC=BC,边CA沿着过点A的某条直线对折得到得到DA,连接CD,以CD为边在左侧作△CDE,其中∠CDE=90°,CD=DE,AD与CE交于点F,连接BD.(1)、如图1,连接AE,当点D在△ABC外部时,试说明△ADE≌△BCD;(2)、如图2,连接AE,当点D在△ABC的斜边AB上时,试判断△AEF的形状并说明理由;(3)、如图3,当点D在△ABC的内部时,若点F为AD的中点,且EF=2,求BD的长.