四川省资阳市2021-2022学年高一上学期数学期末考试试卷
试卷更新日期:2022-07-25 类型:期末考试
一、单选题
-
1. 已知集合 , 则( )A、 B、 C、 D、2. 函数的定义域为( )A、 B、 C、 D、3. 已知 , 则( )A、3 B、5 C、7 D、154. 已知角的顶点与坐标原点重合,始边与轴的非负半轴重合.若点在角α终边上,则( )A、 B、0 C、 D、5. 函数的零点所在的区间为( )A、 B、 C、 D、6. 下列函数中为奇函数且在单调递增的是( )A、 B、 C、 D、7. 为了得到函数的图象,可将函数图象上的所有点( )A、向右平移个单位 B、向左平移个单位 C、向右平移个单位 D、向左平移个单位8. 已知函数为偶函数,则( )A、 B、 C、 D、9. 设 , , , 则a,b,c大小关系为( )A、 B、 C、 D、10. 某企业注重科技创新,逐年加大研发资金投入.现分析了过去10年来的研发资金投入情况,已知2010年投入研发资金80万元,2020年投入研发资金320万元,且每年投入研发资金的增长率相同,则该企业在2022年投入的研发资金约为( )
(参考数据: , )
A、346.4万元 B、368万元 C、400万元 D、423.2万元11. 已知函数是定义在R上的奇函数,且在单调递增,又 , 则不等式的解集为( )A、 B、 C、 D、12. 已知函数 若函数(其中)有6个不同的零点,则实数的取值范围是( )A、 B、 C、 D、二、填空题
-
13. 求值: .14. 给出两个条件:① , ;②在上单调递增.请写出一个同时满足以上两个条件的一个函数 . (写出满足条件的一个函数即可)15. 已知集合 , . 若 , 则实数的取值范围是 .16. 已知函数().给出以下结论:
①若 , 则函数的最小正周期为;
②若 , 则函数在区间上单调递增;
③若 , 函数的图象的对称轴方程为;
④若 , , , 则的最大值为;
其中,所有正确结论的序号是 .
三、解答题
-
17. 已知全集 , 集合 , .(1)、若 , 求;(2)、若 , 求实数的取值范围.18. 已知 , .(1)、求;(2)、求值的值.19. 已知(其中且).(1)、若 , , 求实数的取值范围;(2)、若 , 的最大值大于1,求的取值范围.20. 已知函数的图象关于点对称.(1)、当时,求函数的值域;(2)、若将图象上各点的纵坐标保持不变,横坐标变为原来的倍(其中),所得图象的解析式为 . 若函数在有两个零点,求的取值范围.