(人教版)2022-2023学年度第一学期九年级数学25.3 用频率估计概率 同步测试

试卷更新日期:2022-07-22 类型:同步测试

一、单选题

  • 1. 某鱼塘里养了若干条草鱼、100条鲤鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右.可估计该鱼塘中鱼的总数量为(       ).
    A、300 B、200 C、150 D、250
  • 2. 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是(   )
    A、24 B、18 C、16 D、6
  • 3. 一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:

    摸球的次数

    200

    300

    400

    1000

    1600

    2000

    摸到黑球的频数

    142

    186

    260

    668

    1064

    1333

    摸到黑球的频率

    0.7100

    0.6200

    0.6500

    0.6680

    0.6650

    0.6665

    该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有(  )个.

    A、4 B、3 C、2 D、1
  • 4. 如图①所示,平整的地面上有一个不规则图案(图中阴影部分),为了了解该图案的面积是多少,我们采取了以下办法:用一个长为a,宽为b的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),现将若干次有效实验的结果绘制成了如图②所示的折线统计图,由此估计不规则图案的面积大约是(   )

    A、310a2 B、720ab C、25b2 D、1340ab
  • 5. 有颜色不同的15个红球和若干个白球装在不透明的袋子里,从袋子里摸出一个球记录下颜色后放回,经过多次重复试验,发现摸到白球的频率稳定在0.4,则袋中白球有(   )
    A、10个 B、16个 C、24个 D、40个
  • 6. “十一”长假期间,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动,顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:

    转动转盘的次数n

    100

    150

    200

    500

    800

    1000

    落在“铅笔”区域的次数m

    68

    108

    140

    355

    560

    690

    落在“铅笔”区域的频率 mn

    0.68

    0.72

    0.70

    0.71

    0.70

    0.69

    下列说法错误的是(    )

    A、转动转盘20次,一定有6次获得“文具盒”铅笔文具盒 B、转动转盘一次,获得“铅笔”的概率大约是0.70 C、再转动转盘100次,指针落在“铅笔”区域的次数不一定是68次 D、如果转动转盘3000次,指针落在“文具盒”区域的次数大约有900次
  • 7. 一个不透明的袋子中有1个红球,1个绿球和 n 个白球, 这些球除颜外都相同. 从袋中随机摸出一个球, 记录其颜色, 然后放回. 大量重复该实验, 发现摸到绿球的频率稳定于0.25, 则白球的个数 n 的值可能是 (   )
    A、1 B、2 C、4 D、5
  • 8. 不透明布袋中装有除颜色外完全相同的红、白球,已知红、白球共有60个,同学们通过多次试验后发现摸到红色球的频率稳定在 14 左右,则袋中红球个数可能为(  )
    A、30 B、25 C、20 D、15
  • 9. 在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是(  )
    A、16 B、18 C、20 D、22
  • 10. 下列说法正确的是(   )
    A、掷一枚质地均匀的骰子,掷得的点数为3的概率是 13 B、某种彩票中奖的概率是 110000 ,那么买10000张这种彩票一定会中奖 C、掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同 D、通过大量重复试验,可以用频率估计概率

二、填空题

  • 11. 在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是.
  • 12. 下表记录了一名球员在罚球线上投篮的结果:

    投篮次数 n

    50

    100

    150

    200

    250

    300

    500

    投中次数 m

    28

    60

    78

    104

    125

    153

    250

    投中频率 mn

    0.56

    0.60

    0.52

    0.52

    0.50

    0.51

    0.50

    这名球员投篮一次,投篮的概率约是(结果保留小数点后一位).

  • 13. 在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验和发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是.
  • 14. 在一个不透明的口袋中装有3个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在30%左右,则口袋中白球可能有个.
  • 15. 在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同.小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 个红球.

三、解答题

  • 16.   4件同型号的产品中,有1件不合格品和3件合格品.在这4件产品中加入 x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,由此可以推算出 x 的值大约是多少?
  • 17. 某人承包了一池塘养鱼,他想估计一下收入情况.于是让他上初三的儿子帮忙.他儿子先让他从鱼塘里随意打捞上了60条鱼,把每条鱼都作上标记,放回鱼塘;过了2天,他让他父亲从鱼塘内打捞上了50条鱼,结果里面有2条带标记的.假设当时这种鱼的市面价为2.8元/斤,平均每条鱼估计2.3斤,你能帮助他估计一下今年的收入情况吗?
  • 18. 小敏在“抛一枚均匀硬币”的试验中忘记带硬币了,她想用其他东西代替.这时,她看到书包里自己带的矿泉水,于是她灵机一动.把瓶盖拧下来代替均匀硬币进行模拟试验,从而得一个试验结果.你认为她的做法对吗?
  • 19. 某市理化生实验操作考试采用学生抽签的方式决定自己的考试内容.规定:每位考生从三个物理实验题(题签分别用代码W1 , W2 , W3表示)、三个化学物实验题(题签分别用代码H1、H2、H3表示),二个生物实验题(题签分别用代码S1 , S2表示)中分别抽取一个进行考试.小亮在看不到题签的情况下,从他们中随机地各抽取一个题签.求小亮抽到的题签代码的下标(例如“W2”的下标为“2”)之和为6的概率是多少?
  • 20. 在一个不透明的袋子中装有红、黄两种颜色的球共20个,每个球除颜色外完全相同.某学习兴趣小组做摸球实验,将球搅匀后从中随机摸出1个球,记下颜色后再放回袋中,不断重复.下表是活动进行中的部分统计数据.

    摸球的次数n

    100

    150

    200

    500

    800

    1000

    摸到红球的次数m

    59

    96

    118

    290

    480

    601

    摸到红球的频率mn

    0.59

     

    0.58


    0.60

    0.601

    (1)完成上表;

    (2)“摸到红球”的概率的估计值 (精确到0.1)

    (3)试估算袋子中红球的个数.

  • 21. 桌上放着一副扑克牌其中的四张,分别是2,3,4,5.如果把数字扣在下面,任意抽取两张,组成一个两位数,正好是奇数的机会有多大?正好是偶数的机会又是多大?简要说明理由.如果没有扑克牌可用什么替代物来模拟试验?说说你的做法.

  • 22. 某校九年级(8)课外活动设置了如图所示的翻牌游戏,每次抽奖翻开一个数字,考虑“第一个人中奖排球”的机会.

    正面

    1

    2

    3

    4

    5

    6

    7

    8

    9

    反面

    排球

    钢笔

    图书

    铅笔

    空门

    书包

    球拍

    小刀

    篮球

    (1)如果用实验进行估计,但制作翻奖牌没有材料,那么你有什么简便的模拟实验方法?

    (2)如果不做实验,你能估计“第一个人中奖排球”的机会是多少?

  • 23.

    某商场为了吸引顾客,设立了一个可以自由转动的转盘(如下图),并规定:购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准红、绿、黄、白区域,那么顾客就可以分别得到80元、30元、10元、0元的购物券,凭购物券仍然可以在商场购物;如果顾客不愿意转转盘,那么可以直接获得购物券10元.

    (1)每转动一次转盘所获购物券金额的平均数是多少?

    (2)若在此商场购买100元的货物,那么你将选择哪种方式获得购物券?

    (3)小明在家里也做了一个同样的转盘做实验,转10次后共获得购物券96元,他说还是不转转盘直接领取购物券合算,你同意小明的说法吗?请说明理由.

  • 24.

    某商场在“清明小假期”举行促销活动,设立了一个可以自由转动的转盘进行摇奖活动,并规定顾客每购买200元商品,就可以获得一次转动转盘的机会,小明根据活动情况绘制了一个扇形统计图,如图所示.

    (1)求每转动一次转盘所获得购物券金额的平均数;

    (2)小明做了一次实验,他转了200次转盘,总共获得5800元购物券,他平均每转动一次转盘获得的购物券是多少元?

    (3)请你说明上述两个结果为什么有差别?