江西省名校2022届高三理数5月模拟冲刺试卷
试卷更新日期:2022-07-05 类型:高考模拟
一、单选题
-
1. 若 , , 则( )A、 B、 C、2 D、12. 已知集合 , , 则( )A、{1} B、 C、 D、3. 2021年全运会的吉祥物以四个国宝级动物“朱鹮、大熊猫、羚牛、金丝猴”为创意原型,分别取名“朱朱”“熊熊”“羚羚”“金金”.某同学共有5个吉祥物娃娃,其中2个“朱朱”,“熊熊”“羚羚”“金金”各1个,从中随机抽取两个送给同学,则抽取的吉祥物中含“朱朱”的概率为( )A、 B、 C、 D、4. 我国第七次人口普查的数据于2021年公布,将我国历次人口普查的调查数据整理后得到如图所示的折线图,则下列说法错误的是( )A、从人口普查结果来看,我国人口总量处于递增状态 B、2000-2020年年均增长率都低于1.5% C、历次人口普查的年均增长率逐年递减 D、第三次人口普查时,人口年均增长率达到历史最高点5. 已知 , 且 , 则( )A、 B、 C、 D、6. 中国是全球最大的光伏制造和应用国,平准化度电成本(LCOE)也称度电成本,是一项用于分析各种发电技术成本的主要指标,其中光伏发电系统与储能设备的等年值系数对计算度电成本具有重要影响.等年值系数和设备寿命周期具有如下函数关系 , 为折现率,寿命周期为年的设备的等年值系数约为 , 则对于寿命周期约为年的光伏-储能微电网系统,其等年值系数约为( )A、0.03 B、0.05 C、0.07 D、0.087. 的展开式中的系数为( )A、-23 B、23 C、-27 D、278. 设甲:实数;乙:方程是圆,则甲是乙的( )A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件9. 在长方体中,点 , , , 分别为 , , , 的中点,则下列结论成立的是( )A、 B、平面平面 C、直线与平面的夹角为 D、平面平面10. 已知函数的最小正周期为 , 且其图象关于直线对称,则函数图象的一个对称中心是( )A、 B、 C、 D、11. 已知双曲线的左、右焦点分别为、 , 点在双曲线的右支上,过点作渐近线的垂线,垂足为 , 若的最小值为 , 则双曲线的离心率为( )A、 B、 C、2 D、12. 已知函数的图象关于直线对称,对 , 都有恒成立,当时 , 若函数的图象和直线 , 有5个交点,则k的取值范围为( )A、 B、 C、 D、
二、填空题
-
13. 已知抛物线的准线方程为 , 若上有一点位于第一象限,且点到抛物线焦点的距离为 , 则点的坐标为 .14. 已知向量 , 均为单位向量, , , , 则与的夹角为 .15. 的内角 , , 的对边分别为 , , , 面积为 , , 且 , 则 .16. 已知菱形中 , 沿对角线进行翻折,当三棱锥的体积最大时, .
三、解答题
-
17. 设数列满足 , .(1)、求证:为等比数列,并求的通项公式;(2)、若 , 求数列的前项和 .18. 如图,四棱锥中,四边形为菱形, , 且 , .(1)、求证:平面;(2)、若 , , 求二面角的余弦值.19. 自中国共产党第十九届中央委员会第五次全体会议提出“坚持创新在我国现代化建设全局中的核心地位”的发展战略以来,某公司一直致力于创新研发,并计划拿出100万对 , 两种芯片进行创新研发,根据市场调研及经验得到研发芯片后一年内的收益率与概率如下表所示:
收益率
-10%
10%
20%
30%
概率
0.2
0.5
0.2
0.1
研发芯片的收益(万元)与投资额(万元)满足函数关系 .
(1)、若对研发芯片投资60万,芯片投资40万,求总收益不低于18万元的概率;(2)、若研发芯片收益不低于投资额的10%,则称芯片“研发成功”,否则为“研发失败”,若要使总收益的数学期望值不低于10.5万元,能否保证芯片“研发成功”,请说明理由.(参考数据:)20. 已知椭圆的左、右焦点分别为 , , 过作直线的垂线,垂足为A,若 , 且椭圆的长轴长为 .(1)、求椭圆的标准方程;(2)、若直线与椭圆交于 , 两点,求面积的取值范围.