2022-2023学年初数北师大版九年级上册2.1认识一元二次方程 同步训练

试卷更新日期:2022-07-05 类型:同步测试

一、单选题(每题4分,共40分)

  • 1. 下列方程中,是关于x的一元二次方程是(   )
    A、ax2+bx+c=0 B、1x2+1x2=0 C、3x2=2(x+1) D、x2+2x=x21
  • 2. 在等式①x2+x=1;②3+2=5;③1x+1=0;⑤x+y=1;⑤x+3=2x中,符合一元二次方程概念的是(    )
    A、①⑤ B、 C、 D、①④
  • 3. 一元二次方程 x23x+1=0 ,二次项系数和一次项系数分别为(   )
    A、1、 0 B、1、 3 C、1、-3 D、-1、-3
  • 4. 方程(x+1)(x+2)=0化为一般形式后,常数项为(  )
    A、6 B、﹣8 C、2 D、﹣4
  • 5. 关于x的方程(a﹣1)x2﹣3x+2=0是一元二次方程,则(    )
    A、a≠1 B、a=1 C、a>1 D、a≥1
  • 6. 已知关于x的方程(m+4)x2+2x﹣3m=0是一元二次方程,则m的取值范围是(   )
    A、m<﹣4 B、m≠0 C、m≠﹣4 D、m>﹣4
  • 7. 关于 x 的一元二次方程 (m3)x2+m2x=9x+5 化为一般形式后不含一次项,则 m 的值为(   )
    A、0 B、±3 C、3 D、-3
  • 8. 下表是用计算器探索函数y=2x2﹣2x﹣10所得的数值,则方程2x2﹣2x﹣10=0的一个近似解为(   )

    x

    ﹣2.1

    ﹣2.2

    ﹣2.3

    ﹣2.4

    y

    ﹣1.39

    ﹣0.76

    ﹣0.11

    0.56

    A、x≈﹣2.15 B、x≈﹣2.21 C、x≈﹣2.32 D、x≈﹣2.41
  • 9. 根据下表:

    x

    -3

    -2

    -1

    4

    5

    6

    x²-bx-5

    13

    5

    -1

    -1

    5

    13

    确定方程x²-bx-5=0的解的取值范围是(    )

    A、-2<x<-1或4<x<5 B、-2<x<-1或5<x<6 C、-3<x<-2或5<x<6 D、-3<x<-2或4<x<5
  • 10. 下列叙述正确的是(    )
    A、形如ax2+bx+c=0的方程叫一元二次方程 B、方程4x2+3x=4不含有常数项 C、一元二次方程中,二次项系数、一次项系数及常数项均不能为0 D、(3y)2=0是关于y的一元二次方程

二、填空题(每空4分,共24分)

  • 11. 若关于x的方程(m+2)x|m|+2x-3=0是一元二次方程,则m=.
  • 12. 将方程(3x2)(x+1)=8x3化成一元二次方程的一般形式后,其二次项系数是 , 一次项系数是
  • 13. 关于x的方程(m2)xm223x+1=0是一元二次方程,则m= .  
  • 14. 已知关于x的方程 (a3)x2+a1x=3 为一元二次方程,则a的取值范围是.
  • 15. 在探究一元二次方程x2+12x﹣15=0的近似解时,小明所在的小组采用了赋值法,计算结果如表:

     x

    1.1

    1.2

    1.3

    1.4

    x2+12x﹣15

    -0.59

    0.84

    2.29

    3.76

    小组同学说,他们发现了该方程的一个近似解.这个近似解的十分位是

三、解答题(共4题,共36分)

  • 16. 已知关于x的一元二次方程m(x-1)2=-3x2+x的二次项系数与一次项系数互为相反数,则m的值为多少?
  • 17. 若方程(m-2) xm2-2 +(3-m)x-2=0是关于x的一元二次方程,试求代数式m2+2m-4的值.
  • 18. 已知方程 (m+1)xm2+1+(m3)x1=0 .
    (1)、当m取何值时是一元二次方程?
    (2)、当m取何值时是一元一次方程?
  • 19. 可以用如下方法估计方程 x2+2x10=0 的解:

    x=2时, x2+2x10 =-2<0,

    x=-5时, x2+2x10 =5>0,

    所以方程有一个根在-5和2之间.

    (1)、参考上面的方法,找到方程 x2+2x10=0 的另一个根在哪两个连续整数之间;
    (2)、若方程 x2+2x+c=0 有一个根在0和1之间,求c的取值范围.