天津市南开区2022届高三下学期数学二模试卷
试卷更新日期:2022-06-27 类型:高考模拟
一、单选题
-
1. 设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有( )A、3个 B、4个 C、5个 D、6个2. 设 , 则“”是“”的( )A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件3. 为了解某地区老年人体育运动情况,随机抽取了200名老年人进行调查.根据调查结果绘制了下面日均体育运动时间的频率分布直方图,则日均体育运动时间的众数和中位数分别是( )A、35,35 B、40,35 C、30,30 D、35,304. 函数的图象大致为( )A、 B、 C、 D、5. 设 , , , 则的大小关系是( )A、 B、 C、 D、6. 已知矩形的顶点都在球心为的球面上, , , 且四棱锥的体积为 , 则球的表面积为( )A、64π B、52π C、48π D、7. 函数 , 其图象的一个最低点是 , 距离点最近的对称中心为 , 则( )A、 B、是函数图象的一条对称轴 C、时,函数单调递增 D、的图象向右平移个单位后得到的图象,若是奇函数,则的最小值是8. 设抛物线的焦点到双曲线的一条渐近线的距离为 , 到双曲线左顶点的距离为 , 则该双曲线的离心率是( )A、 B、 C、2 D、9. 已知定义在上的函数若函数恰有2个零点,则实数的取值范围是( )A、 B、 C、 D、
二、填空题
-
10. 已知是虚数单位,复数满足 , 则 .11. 在的展开式中,的系数是 .12. 已知直线:与圆:相交于两点,若 , 则的值为 .13. 已知 , , 则的最大值是 .14. 甲罐中有3个红球、2个黑球,乙罐中有2个红球、2个黑球.①先从甲罐中随机取出一球放入乙罐,以表示事件“由甲罐取出的球是红球”,再从乙罐中随机取出一球,以表示事件“由乙罐取出的球是红球”,则;②从甲、乙两罐中分别随机各取出一球,则取到黑球的个数的数学期望为 .15. 已知平行四边形中, , , , 则;若 , , 则的最大值为 .
三、解答题
-
16. 在中,内角对边的边长分别是 , 已知 .(1)、若 , , 求;(2)、若 , 求证:是等边三角形;(3)、若 , 求的值.17. 如图,在多面体中,底面为正方形,平面 , 平面 , .(1)、求证:平面;(2)、若 , 求与平面所成角的正弦值;(3)、若平面 , 求平面与平面夹角的余弦值.18. 已知椭圆: , 其离心率为 , 若 , 分别为的左、右焦点,轴上方一点在椭圆上,且满足 , .(1)、求的方程;(2)、过点的直线交于另一点 , 点与点关于轴对称,直线交轴于点 , 若的面积是的面积的2倍,求直线的方程.