浙江省杭州市余杭区2022届九年级下学期3月月考数学试题(一模)
试卷更新日期:2022-05-13 类型:中考模拟
一、单选题
-
1. 下列四个数中,最小的数是( )A、1 B、﹣ C、2 D、2. 地球与月球的距离大约为380000千米,用科学记数法可表示为( )千米.A、 B、 C、 D、3. 以下代数式的值可以为负数的是( )A、|3-x| B、x2+x C、 D、x2-2x+14. 底面半径为3,高为4的圆锥侧面积为( )A、15π B、20π C、25π D、30π5. 若 2x+5<0,则( )A、x+1<0 B、1-x<0 C、 1 D、-2x<126. 如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是( )A、2 B、 C、1 D、7. 在一个不透明的口袋中装有若干个只有颜色不同的白球和黄球,如果袋中黄球的个数是白球的两倍,那么摸到白球的概率为( )A、 B、 C、 D、不能确定8. 若二次函数y=ax2+2ax(a≠0)的图象过点P(1,4),则该图象必过点( )A、(-3,4) B、(-1,4) C、(0,3) D、(2,4)9. 若关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“2倍根方程”,以下说法不正确的是( )A、方程x2-3x+2=0是2倍根方程 B、若关于x的方程(x-2) (mx+n)=0是2倍根方程,则m+n=0 C、若m+n=0且m≠0,则关于x的方程(x-2) (mx+n)=0是2倍根方程 D、若2m+n=0且m≠0,则关于x的方程x2+(m-n)x-mn=0 是2倍根方程10. 如图,抛物线与x轴交于点 , 顶点坐标为 , 与y轴的交点在和两点之间(包含端点).下列结论中正确的是( )
①不等式的解集为或;②;③一元二次方程的两个根分别为 , ;④.
A、①②③ B、①②④ C、②③④ D、①③④二、填空题
-
11. 分解因式: =.12. 一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为 .13. 已知△ABC中,点O为△ABC的外心,且∠BOC=80°,则∠BAC度数为 .14. 在Rt中, , 若 , 则斜边上的高等于.15. 关于x的方程ax2-2bx-3=0(ab≠0)两根为m,n,且(2am2-4bm+2a)(3an2-6bn-2a)=54,则a的值为 .16. 已知直线y= x+2与函数y= 的 图象交于A,B两点(点A在点B的左边).(1)、点A的坐标是;(2)、已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连结OA′,OB′.当m=时,|OA'﹣OB'|取最大值.
三、解答题
-
17. 化简:(1)、(2)、18. 在“庆元旦、迎新年”班级活动中,同学们准备了四个节目:A唱歌、B跳舞、C说相声、D弹古筝.并通过抽签的方式决定这四个节目的表演顺序.(1)、第一个节目是说相声的概率是;(2)、求第二个节目是弹古筝的概率.19. 小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:
次数
购买数量(件
购买总费用(元
A
B
第一次
2
1
55
第二次
1
3
65
根据以上信息解答下列问题:
(1)、求A,B两种商品的单价;(2)、若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.20. 如图,为了测出旗杆AB的高度,在旗杆前的平地上选择一点C,测得旗杆顶部A的仰角为45°,在C,B之间选择一点D(C,D,B三点共线),测得旗杆顶部A的仰角为75°,且CD=8m.(参考数据:≈1.414;≈1.732;≈2.236.)(1)、求点D到CA的距离(结果保留根号).(2)、求旗杆AB的高(结果精确到0.01m).21. 如图,在中, , 以为圆心,为半径画弧,交线段于点 , 以为圆心,为半径画弧,交线段于点 , 连接.(1)、若 , 求的度数;(2)、若 , 求的长.22. 在平面直角坐标系内,设二次函数y1=(x-a)2+a-1(a为常数).(1)、若函数y1的图象经过点(1,2),求函数y1的表达式.(2)、若函数y1的图象与一次函数y2=x+b(b为常数)的图象有且仅有一个交点,求b的值.(3)、已知(m,n)( m>0)在函数y1的图象上,当m>2a时,求证:n>.23. 如图,是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD,CD,过点D作DP∥BC与AC的延长线交于点P.(1)、求证:△ABD∽△ADP(2)、求证:DP是⊙O的切线;(3)、当AB=5cm,AC=12cm 时,求线段PC的长.