山西省2022届高三理数第二次模拟试卷

试卷更新日期:2022-05-09 类型:高考模拟

一、单选题

  • 1. |2i|2i3+i=(       )
    A、52+152i B、52152i C、12+32i D、1232i
  • 2. 若sin2αtanα=13 , 则cos2α=(       )
    A、23 B、23 C、13 D、13
  • 3. 已知集合A={xZ|x2<3}B={x|a<x<a+32} , 若AB有2个元素,则实数a的取值范围是( )
    A、(321) B、(320) C、(320)(1+) D、(321)(120)
  • 4. 2022年北京冬奥会开幕式各个代表团所身着的运动鞋服品牌一度成为热议话题,运动鞋服是近年来新消费市场中规模相当庞大的品类,下图为2021年中国消费者运动鞋服购置品牌偏好调查,根据该图,下列说法错误的是(       )

    A、2021年中国运动鞋服消费者为父母长辈购买运动鞋服时选择国产品牌的占比超过70% B、2021年中国运动鞋服消费者没有为孩子购买运动鞋服的占比低于20% C、2021年中国运动鞋服消费者在为自己购买运动鞋服时选择国外品牌的占比不超过14 D、2021年中国运动鞋服消费者在为朋友购买运动鞋服时选择国产品牌的人数超过选择国外品牌人数的2倍
  • 5. (1x62)(x31)6的展开式中的常数项为(       )
    A、13 B、17 C、-13 D、-17
  • 6. 已知圆柱O1O2的高O1O2=8 , 圆O1O2都在球O的表面上,且球O的表面积是圆柱O1O2侧面积的2倍,则球O的半径为(       )
    A、4 B、32 C、42 D、42+23
  • 7. 已知f(x)={2x+ax0x2+2x+ax<0 , 若对任意tR , 关于x的方程f(x)=13sint无实根,则实数a的范围是(       )
    A、(2313] B、(2313) C、(23] D、(13+)
  • 8. 我们把短边与长边之比为512的矩形称为黄金分割矩形,黄金分割矩形看起来比较“和谐”,日常生活中的矩形用品(如书本、课桌、衣柜)和建筑物中的一些矩形结构(如窗户、房间等),都常设计成黄金分割的样式,若一面积为252的黄金分割矩形一条短边的两个顶点在抛物线Cy2=2px(p>0)的准线上,另一条短边的中点为抛物线C的焦点F,则该黄金分割矩形与抛物线C的一个交点到F的距离为( )
    A、5 B、51 C、358 D、1158
  • 9. 若存在实数x,y,使得{x+10y20xy+t0成立,且对任意a,b(0+)aba2+b2+abt , 则实数t的取值范围是( )
    A、[3+) B、[133] C、(133] D、(13]
  • 10. 下面关于函数f(x)=sin2x+2|sinx|cosx的结论,其中错误的是(       )
    A、f(x)的值域是[22] B、f(x)是周期函数 C、f(x)的图象关于直线x=π2对称 D、x(π2π)f(x)=0
  • 11. 在菱形ABCD中,AB=AC=2 , 点P在菱形ABCD所在平面内,则(PA+PB)PC的最小值为( )
    A、3 B、-3 C、32 D、74
  • 12. 已知af(x)=x332x2+6x5的一个零点,bg(x)=ex+x+1的一个零点,c=2log135 , 则( )
    A、a<c<b B、a<b<c C、b<c<a D、a<c<bc<b<a

二、填空题

  • 13. 已知函数f(x)=x32x2x给出下列结论:①f(x)是偶函数;②f(x)(0+)上是增函数;③若t>0 , 则点(tf(t))与原点连线的斜率恒为正.其中正确结论的序号为
  • 14. 已知三棱锥ABCD的所有棱长都相等,点E为AD中点,点F为底面BCD内的动点,记EF的最小值为d1 , 最大值为d2 , 则d1d2=.
  • 15. △ABC中角A,B,C所对的边分别为a,b,c,若A=π3 , △ABC的面积S=3(a+3) , 则a的最小值为
  • 16. 过椭圆Cx22+y2=1左焦点F的直线与椭圆C交于A,B两点,若线段AB的垂直平分线与x轴及y轴各有唯一公共点M,N,则|MF|的取值范围是.

三、解答题

  • 17. 数据显示,中国在线直播用户规模及在线直播购物规模近几年都保持高速增长态势,下表为2017-2021年中国在线直播用户规模(单位:亿人),其中2017年-2021年对应的代码依次为1-5.

    年份代码x

    1

    2

    3

    4

    5

    市场规模y

    3.98

    4.56

    5.04

    5.86

    6.36

    参考数据:y¯=5.16v¯=1.68i=15viyi=45.10 , 其中vi=xi

    参考公式:对于一组数据(v1y1)(v2y2) , …,(vnyn) , 其回归直线y^=b^v+a^的斜率和截距的最小二乘估计公式分别为b^=i=1nviyinv¯y¯i=1nvi2nv¯2a^=y¯b^v¯

    (1)、由上表数据可知,可用函数模型y^=b^x+a^拟合y与x的关系,请建立y关于x的回归方程(a^b^的值精确到0.01);
    (2)、已知中国在线直播购物用户选择在品牌官方直播间购物的概率为p,现从中国在线直播购物用户中随机抽取4人,记这4人中选择在品牌官方直播间购物的人数为X,若P(X=3)=P(X=4) , 求X的分布列与期望.
  • 18. 已知数列{an}的前n项和为Sn , 若a2=4Snnn=12an
    (1)、求证:数列{an}是等差数列;
    (2)、从下面两个条件中选一个,求数列{bn}的前n项的和T

    bn=|an11|

    bn=a2n1a2na2na2n+1

  • 19. 在四棱锥ABCDE中,AC,BC,CD两两垂直,AC=BC=BE=1,CD=2,BE//CD.

    (1)、求证:平面ACE⊥平面ADE;
    (2)、求直线BD与平面ACE所成角的正弦值.
  • 20. 已知双曲线Cx2a2y2b2=1(a>0b>0)经过点A1(20)A2(40)A3(223)A4(223)A5(33)中的3个点.
    (1)、求双曲线C的方程;
    (2)、已知点M,N是双曲线C上与其顶点不重合的两个动点,过点M,N的直线l1l2都经过双曲线C的右顶点,若直线l1l2的斜率分别为k1k2 , 且k1+k2=1 , 判断直线MN是否过定点,若过定点,求出该点的坐标;若不过定点,请说明理由
  • 21. 已知f(x)=e2x+2x+aln(x+1)
    (1)、若f(x)的图象在x=0处的切线过点P(10) , 求a的值;
    (2)、若x>02<a<0 , 求证:f(x)>(x+1)a
  • 22. 在直角坐标系xOy中,曲线C的参数方程是{x=2+cosφy=1+sinφφ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
    (1)、求曲线C的极坐标方程;
    (2)、射线θ=απ2<α<πtanα=34)与曲线C分别交于点A,B,求1|OA|+1|OB|的值.
  • 23. 已知函数f(x)=|x|+|ax1|(aR).
    (1)、若a=2 , 求不等式f(x)>x2+1的解集;
    (2)、若x(02)时,f(x)<x2+1 , 求a的取值范围.