北师大版备考2022中考数学二轮复习专题26 统计
试卷更新日期:2022-04-18 类型:二轮复习
一、单选题
-
1. 下列调查中,适宜采用抽样调查的是( )A、调查某批次医用口罩的合格率 B、了解某校八年级一班学生的视力情况 C、了解100张百元钞票中有没有假钞 D、调查神舟十四号载人飞船各零部件的质量2. 某餐厅共有7名员工,所有员工的工资如下表所示,则众数、中位数分别是( )
人员
经理
厨师
会计
服务员
人数
1
2
1
3
工资数
8000
5600
2600
1000
A、1000,5600 B、1000,2600 C、2600,1000 D、5600,10003. 如表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲
乙
丙
丁
平均数(环)
9.8
9.8
9.8
9.8
方差
0.85
0.72
0.88
0.76
根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择( )
A、甲 B、乙 C、丙 D、丁4. 在某校选拔毕业晚会主持人的决赛中,参与投票的每名学生必须从进入决赛的四名选手中选1名,且只能选1名,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票为( )
A、300 B、90 C、75 D、855. 在某次信息技术能力测试中,人工智能社团的8名同学的成绩统计如图所示,由统计图可知这组数据的中位数是( )A、6分 B、7分 C、8分 D、9分6. 现有12块完全相同的巧克力,每块至多被分为两小块,如果这12块巧克力可以平均分给n名同学,则n不可以为( )A、20 B、18 C、15 D、147. 若一组数据 , , 的平均数为4,方差为3,那么数据 , , 的平均数和方差分别是( )A、4, 3 B、6 3 C、3 4 D、6 58. 有甲、乙两种糖果,原价分别为每千克a元和b元,根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果,现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则 =( )A、 B、 C、 D、9. 若样本x1+1,x2+1,…,xn+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,xn+2,下列结论正确的是( )A、平均数为10,方差为2 B、平均数为11,方差为3 C、平均数为11,方差为2 D、平均数为12,方差为410. 根据下表中的信息解决问题:数据
37
38
39
40
41
频数
8
4
5
a
1
若该组数据的中位数不大于38,则符合条件的正整数a的取值共有( )
A、3个 B、4个 C、5个 D、6个11.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断( )
①年用水量不超过180m3的该市居民家庭按第一档水价交费;
②年用水量超过240m3的该市居民家庭按第三档水价交费;
③该市居民家庭年用水量的中位数在150﹣180之间;
④该市居民家庭年用水量的平均数不超过180.
A、①③ B、①④ C、②③ D、②④12. 今年的“六•一”儿童节是个星期五,某校学生会在初一年级进行了学生对学校作息安排的三种期望(全天休息、半天休息、全天上课)的抽样调查,并把调查结果绘成了下面两个统计图,已知此次被调查的男、女学生人数相同.根据图中信息,下列判断:①在被调查的学生中,期望全天休息的人数占53%;②本次调查了200名学生;③在被调查的学生中,有30%的女生期望休息半天;④若该校现有初一学生900人,根据调查结果估计期望至少休息半天的学生超过了720人.其中正确的判断有( )A、4个 B、3个 C、2个 D、1个二、填空题
-
13. 为了解某学校“书香校园”的建设情况,这个学校共有300名学生,检查组在该校随机抽取50名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数直方图(每小组的时间值包含最小值,不包含最大值),若要根据图中信息绘制每组人数的扇形统计图,一周课外阅读时间不少于6小时的这部分扇形的圆心角是°.14. 小明某学期数学平时成绩为90分,期中考试成绩为80分,期末成绩为90分,计算学期总评成绩的方法:平时占20%,期中占30%,期末占50%,则小明这学期的总评成绩是分.15. 为迎接体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:
其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一的众数是13,平均数是12,那么这组数据的方差是。
16. 某学校九(1)班40名同学的期中测试成绩分别为 , , ,……, .已知 + + +……+ = 4800,y= + + +……+ ,当y取最小值时, 的值为.17.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:
(Ⅰ)被抽样调查的学生有 人,并补全条形统计图 ;
(Ⅱ)每天户外活动时间的中位数是 (小时);
(Ⅲ)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有 人?
18. 已知数据 , , , 的方差是 ,则 , , , 的方差为.19. 已知:一组自然数1,2,3…k,去掉其中一个数后剩下的数的平均数为16,则去掉的数是 .20. 如果一组按从小到大排序的数据a,b,c的平均数是b,方差是S2 , 那么数据a+99,b+100,c+101的方差将 S2(填“大于”“小于”或“等于”).三、计算题
-
21. 已知两个有理数:-9和5.(1)、计算: ;(2)、若再添一个负整数 ,且-9,5与 这三个数的平均数仍小于m,求m的值.
四、解答题
-
22. 某校九年级(1)班的一个数学学习小组对全班某次测试中的“一道满分值为6分的解答题得分”情况进行了统计,绘制成下列不完整的统计图(学生得分均为整数):
已知全班同学此题的平均得分为4分,结合表格解决下列问题:
(1)、完成表格,并求该班学生总数;(2)、根据表中提供的数据,补全条形统计图;并判断下列说法中正确的有 . (填序号即可)①该班此题得分的众数是6;
②“随机抽取该班一份试卷,此题得1分”是不可能事件;
③该班学生此题得分的中位数是4;
④若将“该班同学本道题的得分情况”绘制成扇形统计图,求“此题得0分”的人数所对应的圆心角的度数为36°;
(3)、若本年级学生共有540人,请你估计整个年级中此题得满分的学生人数.23. 某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)、样本容量是 , 并补全直方图;(2)、该年级共有学生800人,请估计该年级在这天里发言次数不少于12次的人数;(3)、已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好都是男生的概率.五、综合题
-
24. 为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到如下图表:
该地区每周接种疫苗人数统计表
周次
第1周
第2周
第3周
第4周
第5周
第6周
第7周
第8周
接种人数(万人)
7
10
12
18
25
29
37
42
该地区全民接种疫苗情况扇形统计图
A:建议接种疫苗已接种人群
B:建议接种疫苗尚未接种人群
C:暂不建议接种疫苗人群
根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点 、 作一条直线(如图所示,该直线的函数表达式为 ),那么这条直线可近似反映该地区接种人数的变化趋势.
请根据以上信息,解答下列问题:
(1)、这八周中每周接种人数的平均数为万人:该地区的总人口约为万人;(2)、若从第9周开始,每周的接种人数仍符合上述变化趋势.①估计第9周的接种人数约为 ▲ 万人;
②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?
(3)、实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少 万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果 ,那么该地区的建议接种人群最早将于第几周全部完成接种?25. 为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)、求这7天内小申家每天用水量的平均数和中位数;(2)、求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)、请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)节约的用水量。
-