河南省湘豫名校2022届高三下学期理数3月联考试卷
试卷更新日期:2022-03-22 类型:高考模拟
一、单选题
-
1. 命题“ , ”的否定是( )A、 , B、 , C、 , D、 ,2. 已知集合 , , 则( )A、 B、 C、 D、3. 已知复数(i表示虚数单位),复数z满足 , 则的取值范围是( )A、 B、 C、 D、4. 高一学生小李在课间玩耍时不慎将一个篮球投掷到一个圆台状垃圾篓中,恰好被上底口(半径较大的圆)卡住,球心到垃圾篓底部的距离为 , 垃圾篓上底面直径为24a,下底面直径为18a,母线长为13a,则该篮球的表面积为( )A、 B、 C、 D、5. 已知不等式组 , 表示的平面图形为 , 则按斜二测画法,平面图形的直观图的面积为( )A、 B、 C、 D、6. 由数字1,2,3组成六位数(数字可以不完全使用),若每个数字最多出现三次,则这样的六位数的个数是( )A、420 B、450 C、510 D、5207. 某老物件收藏者购买了清代老榉木的大铜钱形状的水车轮子,正面以颇具传统文化意味的“古钱币”为外形,预示着财源广进,事业发达,也可以理解为象征中国传统文化的天圆地方,其正视图和侧视图(单位:厘米)如图所示(图中),且该轮子的表面积为()平方厘米,若向轮子的正面随机投掷一颗小石子,则恰好落到正方形中的概率为( )A、 B、 C、 D、8. 已知定义在R上的函数为奇函数,则不等式的解集为( )A、 B、 C、 D、9. 已知中, , , O为AB的中点,P为AB的垂直平分线上一点,且 , 则CP的最大值为( )A、 B、 C、 D、410. 已知曲线在点处的切线为l,数列的首项为1,点为切线l上一点,则数列中的最小项为( )A、 B、 C、 D、11. 已知锐角的内角A,B,C所对的边分别为a,b,c, , 且 , 则面积的取值范围为( )A、 B、 C、 D、12. 已知 , , 且 , 则下列不等式恒成立的个数是( )
①;②;③;④.
A、1 B、2 C、3 D、4二、填空题
-
13. 已知双曲线的离心率为 , 则该双曲线的倾斜角为锐角的渐近线的一个方向向量的坐标为.14. 为了弘扬中华民族敬老爱老的传统美德,切实关爱社区老年人的身体健康,社区卫生服务中心联合医院为老年人进行免费体检,并送上健康的祝福.已知重阳节当天,医院彩超室接待了80岁以上的老年人5位,70岁到80岁之间的老年人3位,为了进一步了解各年龄阶段老年人的健康情况,现从8人中随机抽取3人,则抽取的3人中80岁以上的老年人人数的数学期望为.15. 已知将函数的图象向左平移个单位长度得到函数的图象,若函数在时恒成立,则实数m的最大值是.16. 在△中, , , P为边AB上一点, , 则;的最小值为.
三、解答题
-
17. 在2021年的一次车展上,某国产汽车厂家的一个品牌推出了1.5升混动版和纯电动版两款车型,自这两款车型上市后,便获得了不错的口碑,汽车测评人老李通过自媒体平台,对市场上这个品牌汽车车主的性别情况进行了调查统计.
附: , 其中.
0.10
0.050
0.025
0.010
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
(1)、统计数据得到如下列联表:混动版
纯电动版
合计
男
25
女
15
60
合计
70
请将上述列联表补充完整,并判断是否有99.9%的把握认为喜欢哪款车型和性别有关;
(2)、若两款汽车的操控性能优秀率均为 , 动力性能优秀率均为 , 老李又对这两款车型进行操控性能和动力性能测试(假设进行的各项测试之间互相不影响),求两款车型的这两项测试中恰有2项指标优秀的概率.18. 已知数列的前n项和为 , 且 , 正项非常数等比数列的首项为1,且.(1)、求数列和的通项公式;(2)、求数列的前n项和 , 并写出的最小值.19. 如图,在直四棱柱中, , , , , 且P为的中点.(1)、设过B点的平面为 , 若平面平面 , 求平面与四边形和四边形交线的长度之和;(2)、求平面与平面ABCD所成锐二面角的余弦值.20. 已知点P是抛物线C:的顶点,过点的直线l交C于A,B两点,点M是△的外接圆的圆心.(1)、试问:直线l与点M的轨迹是否有交点?若有,请求出交点坐标;若没有,请说明理由;(2)、若在点M的轨迹上存在不关于y轴对称的两点G,H,使直线PG与直线PH关于y轴对称,求证:直线GH必过定点.