山西省晋中市祁县2020-2021学年九年级下学期期中数学试题
试卷更新日期:2022-03-15 类型:期中考试
一、单选题
-
1. 计算的结果是( )A、-8 B、8 C、-6 D、62. 下列运算不正确的是( )A、 B、 C、 D、3. 如图,直线分别与直线相交, , 若 , 则的度数为( )A、80° B、90° C、100° D、110°4. 某学校举行了“重视阅读教学,提高核心素养”系列活动,在增大课堂阅读的同时还鼓励同学进行大量的课后阅读.王老师调查了上个月全班学生阅读课外图书的本数,统计结果如下表所示,则在本次调查中,全班学生阅读课外图书本数的平均数和众数分别是( )
阅读课外图书的本数(本)
0
1
2
3
人数
2
18
14
6
A、1.6,1 B、1,1.5 C、1.6,1.5 D、1,15. 化简的结果是( )A、 B、 C、 D、6. 若关于的一元二次方程有两个相等的实数根,则的值是( )A、-8 B、-4 C、-2 D、27. 某广场有一个小型喷泉,水流从垂直于地面的水管 喷出, 长为 .水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为 .建立平面直角坐标系,水流喷出的高度 与水平距离 之间近似满足函数关系 ,则水流喷出的最大高度为( )A、 B、 C、 D、8. 勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,它也是数学定理中证明方法最多的定理之一.美国第20任总统詹姆斯·加菲尔德的证法如下:, 比较上二式可得.
此证明方法体现的数学思想是( )
A、整体思想 B、转化思想 C、数形结合思想 D、分类讨论思想9. 如图,在中, , 则图中阴影部分的面积为( )A、 B、 C、 D、二、填空题
-
10. 将二次函数的图象先向右平移1个单位长度,再向上平移2个单位长度,所得的二次函数的解析式为.11. 在一个不透明盒子中放入四张卡片,四张卡片上分别写有数字 , 每张卡片除数字不同外其他都相同从中随机抽取两张卡片,其数字之和为非负数的概率是.12. 如图,在中,若 , 利用直尺和圆规按照以下步骤作图:①以点为圆心,任意长为半径作弧,分别交的两边于点;②分别以点为圆心,大于为半径作弧,两弧相交于点;③作射线交于点 , 以点为圆心,为半径作弧,交线段于点.若 , 则.13. 如图,是由白色正方形和灰色等腰直角三角形按照一定规律摆成的图形,按此规律,则第个图形中共有灰色等腰直角三角形个(用含的代数式表示)14. 如图,四边形ABCD是一张矩形纸片,AB=4,点G是CD的中点,先将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点F处,折痕为BE,然后把纸片展平.再将矩形纸片ABCD沿BG折叠,点C恰好落在BE上的点H处,折痕为BG,然后再把纸片展平,分别连接EF、HG,BG,则BC的长为 .
三、解答题
-
15.(1)、计算:(2)、阅读下面的计算过程,并回答下面的问题:
解方程组:
解:②×4,得 4x-2y=16 ③ ......第一步
①-③,得5y=-11......第二步
解得y= . .....第三步
把y= 代入②,得x= . .....第四步
∴原方程组的解为 ......第五步
①以上解题过程中,第二步变形实现了的目的,体现了的数学思想;
②第步开始出现错误,这一步不正确的原因是;
③请写出正确的解题过程 .
16. 如图,在△ABC中,AC=10cm,D为边AB上一点,且AD=2BD.(1)、实践操作:利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)过点D作DE∥BC,交AC边于点E(2)、求AE的长.17. 中华文化博大精深,有着深厚的底蕴,学习传统文化有利于我们的发展改革.电视是一个传播传统文化很好地平台,《中国诗词大会》是中央电视台首档全民参与的诗词节目,节目以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵.节目自从开播以来,成为网络热搜.为此,国内知名搜索引擎,基于广大网民的搜索行为,对关注《中国诗词大会》节目的人群特征作了数据调查.根据搜索大数据绘制了如下统计图表.年龄段
<19
19-24
25-34
35-49
≥50
偏好指数
1.9
____
1.025
0.8
____
请根据统计图表解答下列问题:
(1)、在扇形统计图中,35-49岁年龄段人数所占的百分比是 , 此年龄段人数 对应的扇形的圆心角是度.(2)、补全条形统计图和偏好指数统计表.(3)、根据统计图表的信息,谈谈你对关注《中国诗词大会》节目的人群特征的认识.18. 如图,在平面直角坐标系中,一次函数y=2x+2的图象与x轴、y轴分别交于点A、B,与反比例函数 的图象交于点C(1,m),过点B作y轴的垂线交反比例函数 的图象于点D,连接AD,求k的值及△ABD的面积.19. 大数据时代的降临带来了大量爆炸性的知识增长,其中很大一部分被转化为实用技术推入商用,激光电视就是近几年发展相当迅猛的其中一支.激光电视最值得一提的是对消费者眼睛的保护方面,其光源是激光,运用了反射成像原理,屏幕不通电,无辐射,观看时不会感到刺眼.根据THX、isf观影标准,水平视角33-40°时,双眼处于肌肉放松状态,是享受震撼感官体验的客厅黄金观影位.(1)、如图,小佳家决定要换一个激光电视,他家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,请你计算一下小佳家要选择电视屏幕宽(BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin16.5°≈0.28,cos16.5°≈0.96,tan16.5°≈0.30,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(2)、由于技术革新,激光电视的功能越来越强大,价格也逐渐下降,某电器行经营的某款激光电视去年销售总额为50万元,今年每台销售价比去年降低4000元,若卖出的数量相同,销售总额将比去年减少20%,今年这款激光电视每台的售价是多少元?20. 阅读下列材料,并完成相应的任务:阿基米德是古希腊最伟大的数学家之一,他流传于世的数学著作有十余种.下面是《阿基米德全集》的《引理集》中记载的一个命题:如图1,AB是⊙O的弦,C在⊙O上,CD⊥AB于点D,在弦AB上取一点E,使AD=DE,点F是弧BC上的一点,且 , 连接BF,则BF=BE.小颖思考后,给出了如下证明:
如图2,连接AC、CE、CF、EF
∵CD⊥AB,AD=DE
∴AC=CE(依据1)
∴∠A=∠CEA
∵
∴CF=AC(依据2)
∴CF=CE
∴∠CEF=∠CFE
任务:
(1)、依据1:;依据2:;(2)、请按照上面的证明思路,完成该命题证明的剩余部分;(3)、如图3,将图2中的“弦AB”改为“直径AB”,作直线 与⊙O相切于点F,过点B作BG⊥于点G,其余条件不变.若AB=10,AD=2,则线段FG的长为 .21. 如图(1)、如图①,在等边三角形ABC中,点P在△ABC内,且∠APB=150°,猜想PA,PB,PC三条线段之间有何数量关系,并说明理由.小明同学通过观察、分析、思考,对上述问题形成了如下想法:
想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;
想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…
请参考小明同学的想法,补充图形,并完成该问题的解答过程.(一种方法即可)
(2)、如图②,点P是正方形ABCD内一点,若∠APB=135°,PA,PB,PC三条线段之间又有何数量关系?请说明理由.(3)、如图③,点P是正方形ABCD外一点,若PA,PB,PC三条线段满足“类比探究”中的数量关系,请直接写出∠APB的度数.22. 如图,抛物线与轴交于、两点,与轴交于点 , 点是线段上的一个动点(不与、重合),过点作直线轴交抛物线于点 , 交直线于点 .(1)、求、两点的坐标,及直线的表达式;(2)、若时,求线段的长;(3)、在(2)的条件下,若点是直线上的一个动点,点是抛物线上的一个动点,是否存在以、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.