2021年山东省青岛市市北区中考数学一模试卷
试卷更新日期:2022-03-07 类型:中考模拟
一、单选题
-
1. ﹣2021的相反数是( )A、﹣2021 B、 C、2021 D、﹣2. 一个几何体的展开图如图所示,这个几何体是( )A、三棱柱 B、三棱锥 C、四棱柱 D、四棱锥3. 5G 是第五代移动通信技术,5G网络理论下载速度可以达到每1300000KB 以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为( )A、13×105 B、1.3×105 C、1.3×106 D、1.3×1074. 下列图案中是轴对称图形的有( )A、1个 B、2个 C、3个 D、4个5. 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长 尺,绳子长 尺,根据题意列方程组正确的是( )A、 B、 C、 D、6. 如图,河坝横断面迎水坡AB的坡比为1: ,坝高BC=4m,则AB的长度为( )A、2 m B、4 m C、4 m D、6m7. 若函数的图象与一次函数y=kx+2的图象有公共点,则k的取值范围是( )A、k≥ B、k≥ , 且k≠0 C、k≤ , 且k≠0 D、k≤8. 如图,正方形ABCD中,E、F分别为BC、CD边上的点,∠EAF=45°,则下列结论中正确的有( )
①BE+DF=EF;②tan∠AMD=;③BM2+DN2=MN2;④若EF=1.5,△AEF的面积是3,则正方形ABCD的面积是4.
A、1个 B、2个 C、3个 D、4个二、填空题
-
9. 计算:= .10. 儿童节期间,游乐场里有一种游戏的规则是:在一个装有6个红球和若干白球(每个球除颜色外,其它都相同)的袋中,随机摸一个球,摸到一个红球就得欢动世界通票一张,已知参加这种游戏的有300人,游乐场为此游戏发放欢动世界通票60张,请你通过计算估计袋中白球的数量是 个.11. 一个n边形的内角和是它外角和的4倍,则n= .12. 如图,反比例函数y=的图象上有一点A,过点A作AB⊥x轴于B,S△AOB=2,则k= .13. 如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为.14. 老师用10个1cm×1cm×1cm的小正方体摆出一个立体图形,它的主视图如图①所示,且图中任意两个相邻的小正方体至少有一条棱(1cm)共享,或有一面(1cm×1cm)共享.老师拿出一张3cm×4cm的方格纸(如图②),请小亮将此10个小正方体依主视图摆放在方格纸中的方格内,小亮摆放后的几何体表面积最大为 cm2 . (小正方体摆放时不得悬空,每一小正方体的棱均与水平线垂直或平行)
三、解答题
-
15. 青岛地铁8号线是青岛第六条建成运营的线路,地铁沿线的两个商场A、B与两条道路MF和ME的位置如图所示,其中ME是东西方向的道路,现需要修建一个地铁口(用点O表示),要求点O到两个商场A、B的距离相等,到两条道路MF和ME的距离也相等,且在∠FME的内部.请在示意图中作出一个符合条件的点O.16.(1)、化简:;(2)、若关于x的方程2x2+4x﹣c=0有两个相等的实数根,求方程的解.17. 元旦联欢会上,明明和磊磊玩掷骰子的游戏.现有一枚均匀的正方体骰子,每个面上分别标上数字1、2、3、4、5、6.游戏规则是:明明和磊磊各掷一次骰子,若两次朝上的点数之和是3的倍数,则明明获胜,否则磊磊获胜.(1)、用画树状图或列表的方法表示所有可能的结果;(2)、你认为这个游戏规则对明明和磊磊公平吗?请说明理由.18. 近年来,无人机航拍测量的应用越来越广泛.如图,无人机从A处观测某建筑物至高点O时,俯角为37°;继续水平前行10米到达B处,观测点O,此时的俯角为45°,已知无人机的水平飞行高度为45米.求这栋楼的高度是多少米.(结果精确到0.1)(参考数据:sin37°≈0.60,cos37°≈0.79,tan37°≈0.75,≈1.41)19. 为贯彻《关于全面加强新时代大中小学劳动教育的意见》,各学校都在深入开展劳动教育.某校为了解七、八年级学生一学期参加课外劳动时间(单位:小时)的情况,从该校七、八年级中各随机抽查了20名学生进行问卷调查,并将调查结果进行整理,描述和分析( , , , , ),下面给出了部分信息.
七年级抽取的学生在C组的课外劳动时间为:40,40,50,55
八年级抽取的20名学生的课外劳动时间为:10,15,20,25,30,35,40,40,45,50,50,50,55,60,60,75,75,80,90,95
七年级抽取的学生的课外劳动时间的扇形统计图
七,八年级抽取的学生的课外劳动时间的统计量
年级
平均数
众数
中位数
方差
七年级
50
35
580
八年级
50
50
560
根据以上信息,解答下列问题:
(1)、直接写出 , , 的值;(2)、根据以上数据,在该校七、八年级中,你认为哪个年级参加课外劳动的情况较好?请说明理由(一条理由即可);(3)、若该校七、八年级分别有学生400人,试估计该校七、八年级学生一学期课外劳动时间不少于60小时的人数之和.20. 某古代石桥有17个大小相同的桥洞,桥面平直,其中三个桥洞图案如下左图所示.每个桥洞均可抽象成抛物线形状,其最大高度为4.5m,宽度为6m.将桥墩的宽度、厚度忽略不计,以水平方向为横轴,建立如下右图所示的平面直角坐标系,OM=6.(1)、求OAM这条抛物线的函数关系式;(2)、如图所示,若想在桥洞距水平面3米高的内壁处,安装照明灯,请计算两盏灯P、H之间的水平距离为多少米?(3)、若想在每个桥洞距水平面3米高的内壁处都安装照明灯,则这三个桥洞最左端的灯与最右端灯P、Q之间的水平距离为 米(请直接给出答案,无需提供求解过程).21. 如图,已知四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD,过O点的线段EF,分别交AD,BC于点E,F.(1)、求证:△AOE≌△COF;(2)、如果∠EBD=∠CBD,请判断并证明四边形BEDF的形状.22. 六一前夕,某商场采购A、B两种品牌的卡通笔袋,已知每个A品牌笔袋的进价,比每个B品牌笔袋的进价多2元;若用3000元购进A品牌笔袋的数量,与用2400元购进B品牌笔袋的数量相同.(1)、求每个A品牌笔袋和每个B品牌笔袋的进价分别是多少元;(2)、该商场计划用不超过7220元采购A、B两种品牌的笔袋共800个,且其中B品牌笔袋的数量不超过400个,求该商场共有几种进货方式;(3)、若每个A品牌笔袋售价16元,每个B品牌笔袋售价12元,在第(1)(2)问的前提下,不计其他因素,将所采购的A、B两种笔袋全部售出,求该商场可以获得的最大利润为多少元.23. 【学习方法】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.
例如:
图1,将n行n列的棋子排成一个正方形,我们用两种不同的方法计算棋子的个数:
算法Ⅰ:
类比正方形面积的计算,图形可以看作n行棋子,每行都有n枚,因此棋子的总数是:
n×n=n2
算法Ⅱ:
沿虚线将图案分割,可以发现:
第一层虚线内有1枚棋子,
第二层虚线内有3枚棋子,
第三层虚线内有5枚棋子…
第n层虚线内有(2n﹣1)枚棋子,
则棋子总数为1+3+5+7+…+2n﹣1
由此可得:1+3+5+7+…+2n﹣1=n2
(1)、【类比尝试】如图2,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.请用两种不同的方法计算梯形的面积,并写出你发现的结论.
算法Ⅰ:
算法Ⅱ:
你发现的结论是 .
经过整理,这个结论恰好可以证明我们学过的重要定理 .
(2)、【拓展探究】富比尼原理给我们重要的启发:
从同一个问题的不同角度展开探究,往往会有惊喜地发现.
问题:
n边形有n个顶点,在它的内部再画m个点,以这(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.可以用含m、n的代数式表示y吗?
问题探究:
为了解决这个问题,我们先从简单的情况入手:
(一)研究最简单的多边形﹣﹣三角形.
三角形有3个顶点,在它的内部再画m个点,把三角形剪成若干个三角形,设最多可以剪得y个这样的三角形,那么可以用含有m的代数式来表示y吗?
方法Ⅰ:关注要素﹣﹣三角形内部每增加一个点,与最多可以剪得多少个三角形之间的关系.
从n=3,m=1开始研究:
当n=3,m=1时,最多可以把原三角形剪成3个三角形;
当n=3,m=2时,最多可以把原三角形剪成(3+2)个三角形;
当n=3,m=3时,最多可以把原三角形剪成(5+2)个三角形;
…
进行从特殊到一般的归纳:
对于一般的情形,在三角形内画m个点,第一个点将三角形分成了3个三角形,三角形内部每增加一个点,可增加个三角形.
故n=3时,用含有m的代数式表示y=;
方法Ⅱ:关注要素﹣﹣顶点数对组成三角形的作用.
三角形的三个顶点和它内部的1个点,共4个点,以这4个点为顶点,最多可以组成3个互不重叠的小三角形.
三角形的三个顶点和它内部的2个点,共5个点,以这5个点为顶点,最多可以组成5个互不重叠的小三角形.
三角形的三个顶点和它内部的3个点,共6个点,以这6个点为顶点,最多可以组成7个互不重叠的小三角形.
…
进行从特殊到一般的归纳:
三角形的三个顶点和它内部的m个点,共(m+3)个点,以这(m+3)个点为顶点,最多可以组成个互不重叠的小三角形.
以三角形的三个顶点和它内部的m个点,可把三角形最多剪成个互不重叠的小三角形.
(二)在四边形中研究类似的问题.
四边形有4个顶点,在它的内部再画m个点,把四边形剪成若干个三角形,设最多可以剪得y个三角形,那么可以用含有m的代数式来表示y吗?
方法Ⅰ:
对于一般的情形,在四边形内画m个点,第一个点将四边形分成了4个三角形;四边形内部每增加一个点,可增加个三角形.
故n=4时,用含有m的代数式来表示y:y= .
方法Ⅱ:
四边形的四个顶点和它内部的m个点,共(m+4)个点,以这(m+4)个点为顶点,最多可以组成个互不重叠的小三角形.
(3)、问题解决:对于一般的情形,在n边形内画m个点,通过多角度探究、归纳猜想和算两遍方法的验证,可得y=(用含m、n的代数式表示).
24. 已知:如图,在矩形ABCD中,AB=8cm,BC=6cm.点P从点B出发,沿BC方向匀速运动,速度为1cm/s;点Q从点C出发,沿CD方向匀速运动,速度为2cm/s;点E从点D出发,沿DA方向匀速运动,速度为0.5cm/s;点P、Q、E同时出发.对角线AC的中点为O,连接AP、PQ、QE.设运动时间为t(s)(0<t≤4),解答下列问题:(1)、是否存在某一时刻t,使?若存在,求出t的值;若不存在,请说明理由.(2)、连接OP、OE,设四边形OPQE的面积为y(cm2),求y与t的函数关系式;(3)、在直线AD上作点E关于CD的轴对称点F,是否存在某一时刻t,使P、Q、F三点共线?若存在,直接写出t的值(不需提供解答过程);若不存在,请说明理由.