四川省南充市蓬安县2021-2022学年七年级下学期开学考试数学试卷

试卷更新日期:2022-02-28 类型:开学考试

一、选择题(每题4分,共40分)

  • 1. 如果收入50元记作+50元,那么支出30元记作 (    )
    A、+30元 B、-30元 C、+80元 D、-80元
  • 2. 下列说法错误的是(   )
    A、有数字与字母的乘积组成的代数式叫做单项式 B、几个单项式的和叫做多项式 C、单项式与多项式统称整式 D、一个数字不是一个单项式,它的次数是0
  • 3. 我国在2020年10月开展了第七次人口普查,普查数据显示,我国2020年总人口达到14.1亿,将14.1亿用科学记数法表示为(    )
    A、14.1×107 B、14.1×108 C、1.41×109 D、1.41×1010
  • 4. 化简 13 (9x﹣3)﹣2(x+1)的结果是(    )
    A、2x﹣2 B、x+1 C、5x+3 D、x﹣3
  • 5. 下列运用等式的性质,变形正确的是(  )

    A、若x=y,则x﹣5=y+5 B、若a=b,则ac=bc C、ac=bc , 则2a=3b D、若x=y,则xa=ya
  • 6. 下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )
    A、 B、 C、 D、
  • 7. 已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值等于( )
    A、45° B、60° C、90° D、180°
  • 8.

    如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是(  )


    A、2 cm B、3 cm C、4 cm D、6 cm
  • 9. 南充市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是(    )
    A、5(x+21-1)=6(x-1) B、5(x+21)=6(x-1) C、5(x+21-1)=6x D、5(x+21)=6x
  • 10. 用棋子摆出下列一组三角形,三角形每边有n枚棋子,每个三角形的棋子总数是S.按此规律推断,当三角形边上有n枚棋子时,该三角形的棋子总数S等于(    )

    A、3n-3 B、n-3 C、2n-2 D、2n-3

二、填空题(每题4分,共32分)

  • 11. 若7axb2与-a3by的和为单项式,则yx.
  • 12.
    若2ab2c3x﹣1与﹣5ab2c6x+3是同类项,
    则x=
  • 13. 若∠AOB=75°,∠AOC=27°,则∠BOC=
  • 14. 已知A,B,C是直线l上的三点,且线段AB=9cm,BC =13 AB,那么A,C两点的距离是
  • 15. 已知一个角的余角是35°,那么这个角的度数是
  • 16. 数轴上表示数a和﹣5的两点之间的距离为6,则a的值为
  • 17. 已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是
  • 18. 四个长宽分别为a,b的小长方形(白色的)按如图所示的方式放置,形成了一个长、宽分别为m、n的大长方形,则下列各式不能表示图中阴影部分的面积是


    ①mn-4ab   ②mn-2ab-am   ③an+2bn-4ab   ④a2-2ab-am+mn

三、解答题(共78分)

  • 19. 计算:
    (1)、16÷(-2)3-( 18 )×(-4)+(-1)2020
    (2)、-14-(1-0.5)× 13× [2-(-3)2]
  • 20. 解方程:
    (1)、-4x-2(1-x)=7+5x;
    (2)、4x16= 1 3x23
  • 21. 先化简,再求值:

    3(2x2-3xy-5x-1)+6(-x2+xy-1),其中x、y满足(x+2)2+|y 23 |=0

  • 22. 尺规作图:如图,已知线段a,b,c.

    (1)、求作一条线段,使它等于a+2b;
    (2)、求作一条线段,使它等于a﹣b+c.

    要求:保留作图痕迹,写出结论,但不要求写出作法.

  • 23. 如图,已知线段AD=30cm,点C、B都是线段AD上的点,点E是AB的中点.

    (1)、若BD=6cm,求线段AE的长;
    (2)、在(1)的条件下,若AC =13 AD,且点F是线段CD的中点,求线段EF的长
  • 24. 某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:

    (1)、当购买乒乓球多少盒时,两种优惠办法付款一样?

    (2)、当购买20盒、40盒乒乓球时,去哪家商店购买更合算?

  • 25. 如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC都在直线AB的上方.

    (1)、将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.

    ①此时t的值为  ▲  ;(直接填空)

    ②此时OE是否平分∠AOC?请说明理由;

    (2)、在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;
    (3)、在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.