2022年高考数学 二轮复习解答题型 27 解析几何
试卷更新日期:2022-02-14 类型:二轮复习
一、解答题
-
1. 已知双曲线的一条渐近线斜率为 , 且双曲线C经过点 .(1)、求双曲线C的方程;(2)、斜率为的直线l与双曲线C交于异于M的不同两点A、B,直线MA、MB的斜率分别为、 , 若 , 求直线l的方程.2. 如图,已知椭圆 , 椭圆 , 、.P为椭圆上动点且在第一象限,直线PA、PB分别交椭圆于E、F两点,连接EF交轴于点.过点作BH交椭圆于G,且.(1)、证明:为定值;(2)、证明直线过定点,并求出该定点;(3)、若记、两点的横坐标分别为、 , 证明:为定值.3. 已知P,Q的坐标分别为 , ,直线PM,QM相交于点M,且它们的斜率之积是 .设点M的轨迹为曲线C.(1)、求曲线 的方程;(2)、设 为坐标原点,圆 的半径为1,直线 : 与圆 相切,且与曲线 交于不同的两点A,B.当 ,且满足 时,求 面积的取值范围.4. 已知点M为直线:x=-2上的动点,N(2,0),过M作直线的垂线l,l交线段MN的垂直平分线于点P,记点P的轨迹为C.(1)、求曲线C的方程;(2)、设O是坐标原点,A,B是曲线C上的两个动点,且 , 试问直线AB是否过定点?若不过定点,请说明理由;若过定点,请求出定点坐标.5. 已知椭圆的左、右焦点分别为、 , 焦点为的抛物线的准线被椭圆截得的弦长为 .(1)、求椭圆的标准方程;(2)、若点、到直线的距离之积为 , 求证:直线与椭圆相切.6. 已知椭圆 , 离心率为 , 它的短轴长等于双曲线的虚轴长(1)、求椭圆C的方程(2)、已知是椭圆上的两点,是椭圆上位于直线两侧的动点
①若直线的斜率为 , 求四边形面积的最大值
②当A,B运动时,满足 , 试问直线的斜率是否为定值?请说明理由.
7. 已知椭圆过点.(1)、求椭圆的方程;(2)、若过点的直线与椭圆交于点 , 直线分别交直线于点.求证:线段的中点为定点.8. 已知椭圆的离心率为 , 以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)、求椭圆C的标准方程;(2)、已知点A,B为动直线y=k(x-2)(k≠0)与椭圆C的两个交点,问:在x轴上是否存在定点E,使得为定值?若存在,试求出点E的坐标和定值;若不存在,请说明理由.9. 设抛物线的焦点为F,准线为l,过焦点F且斜率为1的直线与抛物线C交于A,B两点,若的中点到准线l的距离为4.(1)、求抛物线C的方程;(2)、设P为l上任意一点,过点P作C的切线,切点为Q,试判断F是否在以为直径的圆上.10. 抛物线E的顶点为坐标原点O,焦点在x轴上,直线交E于P,Q两点,且.(1)、求E的方程;(2)、直线与E相交于A,B两点,点C在E上,直线的斜率与直线的斜率互为相反数,求内切圆D的方程.11.(1)、已知双曲线E:的焦距为6,实轴长为2,求E的渐近线方程;(2)、已知F是抛物线C:的焦点,是C上一点,且 , 求C的方程.12. 已知椭圆经过四个点中的三个.(1)、求的方程.(2)、若为上不同的两点,为坐标原点,且与垂直,试问上是否存在点(异于点),使得?若存在,求点的坐标;若不存在,说明理由.13. 已知点与定点的距离是点到直线距离的倍,设点的轨迹为曲线 , 直线与交于、两点,点是线段的中点,、是上关于原点对称的两点,且.(1)、求曲线的方程;(2)、当时,求直线的方程;(3)、当四边形的面积时,求的值.