2021-2022学年浙教版数学七下2.2 二元一次方程组同步练习

试卷更新日期:2022-01-28 类型:同步测试

一、单选题

  • 1. 下到方程组中,属于二元一次方程组的是(    )
    A、{x+y=5y=2 B、{x+y=2yz=6 C、{xy=4y=1 D、{x21=0x+y=5
  • 2. 已知关于x,y的方程组 {a1x+b1y=c1a2x+b2y=c2  的解为 {x=2y=4  ,则关于方程组 {a1(x+1)+2b1(y1)=3c1a2(x+1)+2b2(y1)=3c2 的解为(   )
    A、{x=5y=7 B、{x=5y=13 C、{x=1y=3 D、{x=1y=7
  • 3. 已知x,y满足方程组 {x+m=6y3=m ,则无论m取何值,x,y恒有关系式(   )
    A、x+y=3 B、x+y=﹣3 C、x+y=9 D、x+y=﹣9
  • 4. 已知 {x=1y=3 是二元一次方程mx+3y=7的一组解,则m的值为(  )
    A、﹣2 B、2 C、12 D、12
  • 5. 与方程5x+2y=-9构成的方程组,其解为 {x=2y=12 的是( )
    A、x+2y=1 B、3x+2y=-8 C、3x-4y=-8 D、5x+4y=-3
  • 6. 下列方程组中,不属于二元一次方程组的是(   )
    A、{x+y=4yx=1 B、{a+b=2a3b=1 C、{3m+2n=4m3n=20 D、{x+y=4y3z=1
  • 7. 在方程组 {2xy=1y=3z+1{x=23yx=1{x+y=03xy=5{xy=1x+2y=3{1x+1y=1x+y=1{x=1y=1 中,是二元一次方程组的有(  )
    A、2个 B、3个 C、4个 D、5个
  • 8. 方程组 {x+y=12xy=5 的解为(   )
    A、{x=1y=2 B、{x=2y=1 C、{x=3y=1 D、{x=1y=3
  • 9. 小轩解方程组 {x+y=xy=12 的解为 {x=5y= ,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值分别为(   )
    A、{=8=2 B、{=8=2 C、{=8=2 D、{=2=7
  • 10. 如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组 {xy=1axy=3 的解是(  )

    A、{x=1y=2 B、{x=2y=1 C、{x=1y=-2 D、{x=-2y=1

二、填空题

  • 11. 已知关于xy的二元一次方程组 {2x+y=axy=1 的解为 {x=3y=b ,则a+b的值为
  • 12. {x=1y=3 是某个二元一次方程组的解,则这个方程组是.
  • 13. 若方程组 {x(c+3)xy=3xa2yb+3=4 是关于x,y的二元次方程组,则代数式a+b+c=.
  • 14. 已知方程 2xa5(b2)y|b|1=4 是关于 xy 的二元一次方程,则 a2b
  • 15. 古代算筹图用图1表示方程组: {4x+7y=726x+3y=44 ,请写出图2所表示的二元一次方程组


  • 16. 在① {x=1y=1{x=2y=3{x=3y=0 中,①和②是方程 2x3y=5 的解;是方程 3x+y=9 的解;不解方程组,可写出方程组 {2x3y=53x+y=9 的解为

三、解答题

  • 17. 判断下列方程组是否为二元一次方程组,并说明理由.

    {xy=3y+z=4

    {x2y=5x+y3=1

    {x2y+xy=5x=y

    {1xy=3x+3y=1

    {x=5y3y4x=1

  • 18. 根据下列语句,分别设适当的未知数,列出二元一次方程或方程组:
    (1)、甲数的 32 比乙数的2倍少7;
    (2)、摩托车的时速是货车的 53 倍,它们的速度之和是150.
  • 19. 根据题意列出方程组:
    (1)、明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?
    (2)、将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?
  • 20. 根据题意设未知数,并列出方程组:
    (1)、某校七年级二班组织全班同学共40人去参加义务植树活动,男生每人植树4棵,女生每人植树3棵,全组共植树123棵.求男生和女生各有多少人?
    (2)、某人从学校出发骑自行车去县城,中途因为道路施工步行一段路,1.5小时后到达县城.他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车与步行各用多少时间?
    (3)、加工某种产品需要两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件,现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?.